

Contribution ID: 3934 Type: Poster Competition (Graduate Student) / Compétition affiches (Étudiant(e) 2e ou 3e cycle)

(G*) (POS-2) A Xe-127 calibration source for liquid Xe experiments

Tuesday 20 June 2023 17:30 (2 minutes)

The Light-only Liquid Xenon (LoLX) experiment is designed to study the properties of light emission and transport in liquid xenon (LXe) using silicon photomultipliers (SiPMs). A particular focus of LoLX is to measure and study Cherenkov and scintillation light emission in LXe. LoLX is currently being upgraded to investigate the long-term behaviour and performance of Hamamatsu VUV4 and FBK VUV-HD3 SiPMs. Both models are currently being considered for application in the neutrinoless double beta decay experiment nEXO.

A proposed method to monitor the long-term stability and performance of the aforementioned SiPMs in LXe is to augment the xenon with radioactive 127 Xe (an electron capture source with a half-life of 36.3 days and a Q-value of 662.3 keV). This allows for an *in-situ* calibration and performance characterization while the detector is operational. This poster will introduce the concept and focus on the neutron activation estimates of 127 Xe from nat Xe, as well as the methodology for deploying it in LoLX.

Keyword-1

Liquid Xe calibration source

Keyword-2

Neutrinoless double beta decay

Keyword-3

Primary author: RUDOLPH, Lisa

Co-authors: DE ST. CROIX, Austin (TRIUMF/UBC); CHANA, Bindiya; MALBRUNOT, Chloe (CERN); GALLACHER, David; RETIERE, Fabrice; GALLI, Luca (INFN); TÉTRAULT, Marc-André; Dr GIAMPA, Pietro (SNO-LAB); NOWICKI, Sarah (McGill University); VIEL, Simon (Carleton University); AL KHARUSI, Soud; BRON, Stephanie (TRIUMF); BRUNNER, Thomas (McGill University)

Presenter: RUDOLPH, Lisa

Session Classification: PPD Poster Session & Student Poster Competition (6) | Session d'affiches PPD et concours d'affiches étudiantes (6)

Track Classification: Technical Sessions / Sessions techniques: Particle Physics / Physique des particules (PPD)