

STATUS OF THE HYPER-KAMIOKANDE PROJECT

XIAOYUE LI

TRIUMF

IPP ANNUAL GENERAL MEETING, FREDERICTON, NB

JUNE 23, 2023

HYPER-KAMIOKANDE

HYPER-K COLLABORATION

- ▶ ~560 collaborators from 21 countries and 101 institutes
- ▶ 25% Japanese / 75% non-Japanese
- Two Host institutes: University of Tokyo and KEK
- ▶ Hyper-Kamiokande has become a CERN Recognized Experiment: RE45

HYPER-K COLLABORATION

First meeting in person (Toyama, 6-11 March 2023) of the collaboration after the Hyper-Kamiokande approval (2020) and pandemic.

HYPER-K: RECENT PROGRESS

May 2021, Groundbreaking

ハイパーカミオカンデ 着工記念式典 ICRR Hyper-Kamiokande Groundbreaking Ceremony 宇宙線をClostitute for Cosmic Ray Research, The University of Tokyo

HYPER-K: RECENT PROGRESS

HYPER-K: RECENT PROGRESS

HYPER-K CANADA

Hyper-K Canada Collaborating Institutes

- Leadership roles M. Barbi (URegina)
- S. Bhadra (York)
- K. Graham (Carleton)
- R. Gornea (Carleton) Hyper-K safety
- B. Jamieson (UWinnipeg)
- D. Karlen (UVic)
- A. Konaka (TRIUMF)
- N. Kolev (URegina)
- T. Lindner (TRIUMF) ------ mPMT
- J. Martin (UofT)
- B. Pointon (BCIT)

- Hyper-K Canada group formed in 2018
- Supported by NSERC Discovery grant renewed
- Currently 13 investigators from 8 institutes, 4 postdocs, 9 graduate students

- Funding request in 2020 CFI-IF competition, \$5.77M approved (including provincial funds)
- Bulk of matching funds are international contributions to the project
- New collaborators welcome!

HYPER-K PHYSICS GOALS (1)

10 years running, 1:3 ν : $\bar{\nu}$ run plan

Precision measurement of neutrino oscillation parameters

HYPER-K PHYSICS GOALS (2)

- Atmospheric neutrinos improve sensitivity to mass ordering
- > 4 σ discovery potential for diffuse supernova neutrinos & supernova burst detectable up to 1 Mpc
- Resolve solar neutrino and KamLAND tension to $>4\sigma$

HK atmospheric + beam sensitivity to mass ordering

Atmospheric neutrino

Supernova neutrino

Proton decay

INTERMEDIATE WATER CHERENKOV DETECTOR (IWCD)

- $\nu_e/\bar{\nu}_e$ cross-section measurement can be improved due to better γ rejection than ND280
- Measure neutrino fluxes at different energies

"Feed-down" effect in neutrino energy reconstruction

~1 km

WATER CHERENKOV TEST EXPERIMENT (WCTE)

- ▶ T9 test beam @ CERN
- \triangleright 0.3 1.1 GeV π, p, e, μ and tagged γ beam
- ▶ Prototype of IWCD: test of mPMT and calibration techniques
- Detector construction to start in November 2023
- Data taking in April 2024
- ▶ Lots of interesting physics to come with WCTE
 - Control samples for event reconstruction
 - Precision study of water Cherenkov detector response
 - Muon Cherenkov emission profile
 - Study of pion scattering
 - Neutrino interaction model tuning using e/μ scattering

• • • • • • • •

MULTI-PMT DEVELOPMENT

- ▶ 19 3-inch diameter PMTs integrated in module with high voltage and readout electronics
- ▶ 8-cm diameter PMTs have excellent timing resolution (~1.6 ns FWHM) with good spatial resolution
- ▶ High voltage circuits and electronics mainboard are integrated in the module
- ▶ Will build 250 modules for IWCD with CFI-IF funding
 - ▶ 50 WCTE mPMTs will be reused in IWCD

MULTI-PMT FOR WCTE

- Production of 50 WCTE mPMTs will start in July
 - Will use the experience of WCTE mass production to make the final decision about the mPMT assembly strategy.
 - ▶ Choice between in-situ vs ex-situ gelling strategy will be made after WCTE mPMT production
- ▶ 3 sub-ns pulsed LEDs per mPMT for detector calibration & 6 continuous LEDs as photogrammetry targets

Ex-situ gelling mPMTs @ TRIUMF

Measured mPMT relative efficiency

In-situ gelling mPMTs @ Carleton

MULTI-PMT FOR HYPER-K FAR DETECTOR

- CFI-IF 2023 funding competition to build 200 mPMTs for Hyper-K detector for calibration purposes
 - For 200 mPMTs we would replace 5 PMTs with LED units
 - Each of the five LED units will have 8 LEDs with LEDs of 290, 365, 405, 475nm wavelength
 - ▶ A narrow and wide collimator for each wavelength
 - Photon scattering/absorption & PMT timing, angular response calibration
- ▶ mPMT can help break the degeneracy between water quality and PMT angular response -> reduce energy-scale error

20-inch PMT

PHOTOGRAMMETRY GEOMETRY CALIBRATION

- Use photogrammetry to measure the position of PMTs and calibration sources in-situ
 - ▶ The first survey was done in SK using underwater ROV
 - WCTE and IWCD will utilize fixed cameras
 - ▶ Reduce fiducial volume error

First assembled camera module @UWinnipeg

WATER MONITORING SYSTEM

Light transmission through 15 m of water

- Light propagation in water needs to be precisely calibrated and monitored
- Pulsed LED (230 700 nm) with <1 ns width
 - ▶ Same LED driver design as mPMT
- Applications in drinking water monitoring
- First mechanical prototype built @ TRIUMF

MACHINE LEARNING EVENT RECONSTRUCTION

- Machine learning techniques have been applied to event reconstruction in IWCD and Hyper-K
 - Encouraging improvements from traditional method
- ▶ Improve supernova direction finding

19 for charge +19 for time IWCD multi-PM

SN direction in Super-K

e/γ separation in IWCD

Neutron tagging

"Using Machine Learning to Improve Neutron Identification in Water Cherenkov Detectors", Front. Big Data, 30 September 2022 (https://doi.org/ 10.3389/fdata.2022.978857)

- Experiment to Measure the Production of Hadrons At a Test beam In Chicagoland
- ▶ Collection of small detectors to track particles that fits within 4 meters with high precision before and after a target using SSDs, ARICH, TOF, calorimeter and a permanent magnet.
- ▶ Located at the test beam facility in Fermilab.
- Uses the Beam momentum: ± 2, 4, 8, 12, 20, 30, and 120 GeV/c, going lower than the NA61/SHINE.
- ▶ Phase 0 (2018): Proof of concept run of proton-carbon forward scattering with results published: https://doi.org/10.1103/PhysRevD.106.112008
- ▶ Phase 1 (2019-2023): Full spectrometer assembled, data taking with a large collection of thin targets: Aluminum, graphite, iron, water, CH2. Analysis on the way.
- Phase 2 (2024-...): Larger angular acceptance spectrometer in construction, permanent location at Fermilab, thin and replica target measurements plans.

SUMMARY AND OUTLOOK

- ▶ Hyper-K Canada group is focussed on detectors and detector systems necessary to control critical systematic effects for neutrino interaction and detector modeling in Hyper-K
 - Novel multi-PMT photosensor development
 - ▶ WCTE will take data in April 2024 and will yield interesting physics results
 - IWCD will constrain key cross section uncertainties and enable oscillation parameter measurement more independent of neutrino cross section modeling
 - New detector calibration techniques
 - ▶ Reducing neutrino production modeling uncertainties with hadron production measurements
- ▶ CFI-IF 2020 award funds mPMTs and photogrammetry for the IWCD
- ▶ CFI-IF 2023 award will fund mPMTs and photogrammetry for the Hyper-K detector