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Qubit

|0⟩

|1⟩
|ψ⟩ = c0 |0⟩ + c1 |1⟩

Well developed hardware, algorithms, programming tools, …

Why qubit?



Why qubit?

Classical (bit) Quantum (qubit)
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Bosonic system

Bosonic systems = Harmonic oscillators
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Infinite available states

[Q̂, ̂P] = iℏ

Even energy spacing



Physical Platforms

Qubit Bosonic

Superconductor Microwave resonator

Trapped ion Mechanical oscillator

Defect center Photon

Engineering new platforms?
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Bosonic system is already there!



Why boson?



More (degree of) freedom

|Ψ0⟩ ≡ |0L⟩
|Ψ1⟩ ≡ |1L⟩
|Ψ2⟩
|Ψ3⟩
|Ψ4⟩

|ψL⟩ = c0 |0L⟩ + c1 |1L⟩

Bosonic code

x

ψ (x)

|ψ⟩ = ∫ ψ(x) |x⟩dx

Continuous-Variable

Quantum information

Continuous 
wavefunction
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Extending the lifetime of a quantum bit with error 
correction in superconducting circuits
Nissim Ofek1*, Andrei Petrenko1*, Reinier Heeres1, Philip Reinhold1, Zaki Leghtas1†, Brian Vlastakis1, Yehan Liu1, Luigi Frunzio1, 
S. M. Girvin1, L. Jiang1, Mazyar Mirrahimi1,2, M. H. Devoret1 & R. J. Schoelkopf1

Quantum error correction (QEC) can overcome the errors 
experienced by qubits1 and is therefore an essential component 
of a future quantum computer. To implement QEC, a qubit is 
redundantly encoded in a higher-dimensional space using quantum 
states with carefully tailored symmetry properties. Projective 
measurements of these parity-type observables provide error 
syndrome information, with which errors can be corrected via 
simple operations2. The ‘break-even’ point of QEC—at which the 
lifetime of a qubit exceeds the lifetime of the constituents of the 
system—has so far remained out of reach3. Although previous works 
have demonstrated elements of QEC4–16, they primarily illustrate 
the signatures or scaling properties of QEC codes rather than 
test the capacity of the system to preserve a qubit over time. Here 
we demonstrate a QEC system that reaches the break-even point 
by suppressing the natural errors due to energy loss for a qubit 
logically encoded in superpositions of Schrödinger-cat states17 of a 
superconducting resonator18–21. We implement a full QEC protocol 
by using real-time feedback to encode, monitor naturally occurring 
errors, decode and correct. As measured by full process tomography, 
without any post-selection, the corrected qubit lifetime is 320 
microseconds, which is longer than the lifetime of any of the parts 
of the system: 20 times longer than the lifetime of the transmon, 
about 2.2 times longer than the lifetime of an uncorrected logical 
encoding and about 1.1 longer than the lifetime of the best physical 
qubit (the |0〉f and |1〉f Fock states of the resonator). Our results 
illustrate the benefit of using hardware-efficient qubit encodings 
rather than traditional QEC schemes. Furthermore, they advance 
the field of experimental error correction from confirming basic 
concepts to exploring the metrics that drive system performance 
and the challenges in realizing a fault-tolerant system.

Implementing QEC in the laboratory is challenging, requiring a 
complex system with many qubits. Even for a perfectly realized QEC 
system of finite size, there will always be unrecoverable errors or failure 
modes, resulting in an exponential decay of the information over time. 
In fact, error correction first introduces a hardware overhead penalty, 
because an uncorrected logical qubit consisting of n physical qubits  
(for typical first-order codes n ≈  5–10; ref. 22) will experience 
 decoherence that is of order n times faster. A central goal of QEC 
is to suppress the naturally occurring errors and surpass the break-
even point, at which the lifetime gain due to error correction is larger 
than this overhead penalty. These considerations motivate exploring 
a  hardware-efficient approach to QEC, with which it may be more 
tractable to not only overcome the entire overhead, but to pinpoint the 
leading limitations to fault-tolerance.

The encoding of logical states as superpositions of Schrödinger-cat 
states (hereafter, ‘cat code’) that we implement here is a hardware- 
efficient scheme that requires fewer physical resources and introduces 
fewer error  mechanisms than do traditional QEC proposals. Designed 

to operate within a continuous-variable framework23, the cat code 
exploits the fact that a coherent state | α〉  is an eigenstate of the resonator 
lowering operator â: ˆ α α α| 〉= | 〉a . Using a logical basis comprised of 
superpositions of cat states, which are eigenstates of photon-number 
parity, the cat code requires just a single ancilla to monitor the dominant 
error due to single photon loss induced by resonator energy damping. 
This error channel gives rise to two effects: deterministic energy decay 
of the resonator field to vacuum and the stochastic application of â, 
which results in a change of photon-number parity of any state within 
the cat code. The former becomes a limiting factor only at small reso-
nator field amplitudes when coherent state overlap can no longer be 
neglected and can be addressed through either dissipative pumping 
approaches24 or unitary gates. The latter, photon loss, is accompanied 
by phase shifts of π /2 about the Zc axis within the logical space, indi-
cating that by  monitoring photon parity as the error syndrome we 
adhere to the  prescriptions for error correction by translating single 
photon loss into a unitary operation on the encoded state18,19 (Fig. 1):
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where c0 and c1 are arbitrary coefficients satisfying | c0| 2 +  | c1| 2 =  1 and 
α α| 〉=(|( ) 〉±|− ( ) 〉)/α( )

±C i i 2i  (the normalization factor 2  holds 
in the limit of large α (refs 17 and 18)). By detecting photon jumps in  
real-time with quantum non-demolition parity measurements21, we 
learn how the phase relationship between the basis states changes, 
thereby protecting the encoded qubit from the dominant error channel 
of the system. The rate of photon jumps scales linearly with the average 
 photon number n (ref. 17), which exactly mirrors the aforementioned 
overhead faced by traditional QEC codes22,25. Thus, when 
 implementing the cat code, a central figure of merit when assessing the 
performance of the QEC system will be the degree to which we can 
overcome the encoding overhead with the application of fast, repeated 
parity measurements in time.

We use a 3D circuit quantum electrodynamics (QED)  architecture26 
consisting of a single transmon qubit coupled to two waveguide 
 resonators21,27. The transmon is used as an ancilla both to provide 
the error syndrome and to encode and decode the logical states 
(Supplementary Information, section 3). One resonator stores the 
logical states while the other is used for ancilla readout and control. 
The dominant storage–ancilla interaction terms are described by the 
following Hamiltonian:

ħˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †( )ω ω χ/ = + − −H a a a a e e K a a
2s a sa

2 2

with | e〉 〈 e|  the ancilla excited state projector, ωs and ωa the storage 
 resonator (henceforth the resonator) and ancilla transition frequencies, 
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 contrast between the cardinal points of the uncorrected versus the 
 corrected cat codes after approximately 110 µ s (Fig. 3b) demonstrates 
that with a full QEC system we can enhance the lifetime of a qubit 
without giving preference to any one direction on the Bloch sphere. By 
decaying with a time constant that exceeds that of the Fock state by a 
factor of 1.1, this system reaches the break-even point of QEC.

The history of errors also provides us with a valuable measure 
of confidence that the result of an error syndrome measurement 
 faithfully reflects the actual error history. Indeed, a ‘low-confidence’ 
 measurement record that suggests two or more consecutive errors (for 
example, 11 as in Fig. 2c) has a much lower probability of faithfully 
reflecting the true error trajectory of the resonator state than does a 
‘high-confidence’ record, wherein a 1 is ‘confirmed’ by a subsequent 0  
(Supplementary Information, section 7). If we accept only high- 
confidence trajectories, still keeping 80% of the data after 100 µ s, then 
we obtain a decay constant of over half a millisecond. The marked 
improvement we observe when excluding ‘low-confidence’  trajectories 
points to parity measurement infidelity, primarily due to ancilla 
 decoherence, as the dominant limitation on cat-code performance.

An overall analysis of the budget for the lifetime gain for our QEC 
system is shown in Table 1, which lists the dominant avenues of code 
failure common to any QEC system and encapsulates the challenges 
one faces in realizing fault-tolerant QEC. Contributions from the first 
five entries in Table 1 can be suppressed by measuring more quickly 
and using a quantum filter to estimate the parity at any given time21, as 
seen in the column where tw ≈  0 µ s. However, errors due to the ancilla 
T1 persist regardless of measurement rate. Owing to its dispersive 
 coupling to the resonator, a change in the energy of the ancilla at an 
unknown time imparts an unknown rotation to the resonator state in 
phase space; this is the forward propagation of an error. Measuring the 
syndrome more frequently only increases the likelihood of ancilla- 
induced dephasing, necessitating the aforementioned optimized 
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Figure 3 | QEC process tomography. a, To implement QEC, we 
redundantly encode the qubit in cat states ( =n 20 ) and pay the required 
overhead penalty, which is ubiquitous to QEC. This leads initially to worse 
performance; the process fidelity (F(t)) of the uncorrected cat code 
(orange circles), where cat states are left to decay freely between encoding 
and decoding, exhibits faster decay as compared to the Fock states | 0〉 f and 
| 1〉 f (grey circles). Substantial improvements in performance are realized 
with the full QEC system; the corrected cat code (red triangles) surpasses 
the uncorrected transmon (green squares) by a factor of about 20, makes 
up for the QEC overhead by a factor of about 2.2, and offers an 
improvement over the Fock-state encoding by a factor of about 1.1. With 
only high-confidence trajectories (blue diamonds), the decay time τ 
increases to τ >  0.5 ms. The top axis indicates the number of syndrome 
measurements used for each point in the corrected cat code. Cat code data: 

100,000 averages per point; transmon, Fock states: 50,000 averages per 
point; error bars are smaller than marker sizes. Although no data exhibits 
strictly single-exponential decay, all curves are well modelled by 
F(t) =  0.25 +  Ae−t/τ (dotted lines), with τ the decay time of the specific 
qubit storage scheme and A a fitting constant that is ideally equal to 0.75. 
F =  0.25 (grey dashed line) implies a complete loss of information. 
Uncertainties are given by the errors (on τ) in the fit. Fluctuations in the 
uncorrected cat code are explained by the Kerr effect and are reproduced 
in simulation. b, State tomography after approximately 110 µ s 
(corresponding to black arrows in a). Transmon and Fock-state Bloch 
spheres show amplitude damping. Bloch sphere shrinking for the cat code 
is well-characterized by a depolarization channel. The system substantially 
benefits from QEC, as seen from the greater definition of each cardinal 
point in the corrected versus uncorrected case.

Table 1 | Failure modes of the corrected logical qubit
Failure mode Dominant source Maximum rate, 

tw ≈ 0 µs
Optimal rate,  
tw ≈  20 µs

Predicted τ

Double errors Cavity ˆ ˆ⋅a a 40 ms 1.7 ms

Uncorrectable errors Cavity ˆ†a 6 ms 6 ms

Readout error Transmon Tφ 7 ms 2 ms

Ancilla preparation Transmon Γ↑ 300 ms 900 µ s

Undesired couplings Cavity ˆ ˆ†a a2 2 600 ms 3 ms

Forward propagation Transmon T1 200 µ s 600 µ s

Net lifetime Predicted 200 µ s 320 µ s

Measured - 318 µ s

Gain over uncorrected logical qubit 1.4 2.2

Gain over best physical qubit 0.7 1.1

This table shows the predicted decay time constant (τ) of quantum information stored in a 
corrected logical qubit using the cat-code paradigm under a scenario in which each individual 
failure mode is the only source of loss. Dominant modes of failure in the cat code are:  
double errors (â followed by â) between consecutive syndrome measurements separated  
by a time tw; possible errors that the cat code does not address, such as additions of a single 
photon ( ˆ†a ); a failed parity mapping resulting from ancilla dephasing (Tφ); incorrect ancilla 
initialization before syndrome measurement resulting from unknown excitations (Γ↑) of the 
ancilla during tw; undesired couplings that result in dephasing due to Kerr ( ˆ ˆ†a a2 2); and ancilla 
decoherence that directly propagates to unrecoverable errors in the resonator state, which  
is a result of ancilla decay or excitation (T1). Two di!erent measurement strategies are shown  
for an initial =n 20 : as quickly as possible (tw ≈  0 µ s) and the optimal monitoring time (tw ≈  20 µ s). 
The lowest two rows show the multiplicative gains of cat-code performance over the decay 
constants of the uncorrected logical qubit (147 µ s) and the best physical qubit of the system 
(287 µ s, Fock states | 0〉 f,| 1〉 f). These gains re"ect the combined e!ects of all loss channels acting 
together. We predict all numbers using an analytical model derived in Supplementary 
Information, section 6, and show that for the net gains the failure modes do not contribute 
independently. Using the optimal measurement strategy, we #nd that the predicted gains in 
lifetime over the uncorrected logical qubit and over the Fock state encoding match the  
measured performance of the corrected cat code (318 µ s) shown in Fig. 3. Lifetimes of at least 
6 ms would be possible if the forward propagation of errors from the syndrome measurements 
were abated.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Break-even point for Error Correction
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Continuous Variable
of theH-graph generated here [it is self-inverse
and bipartite; see supplementary text section
1.1 for details (23)], it can be transformed into
a cluster state by p=2 rotations in phase space,
leading to real edges ofweight g= tanh(2r)G→
G for r → ∞. Finally, as the p=2 phase space
rotations can be absorbed into the measure-
ment basis, or simply by appropriate redefi-
nitions of quadratures on the rotated modes,
the generatedH-graph state and its correspond-
ing cluster state are completely equivalent. [See
supplementary text section 1.2 for details on the
cluster state generation scheme (23).]
The produced cylindrical 2D cluster state

can be shown to be a universal resource for
quantum computing: In Fig. 2, the gener-
ated cylindrical cluster state is unfolded and
projected into a square lattice by projective
measurements in the position basis and p=2
phase-space rotations of differentmodes. Such

a square lattice is a well-known universal re-
source for quantum computing (25), and thus
the initial cylindrical cluster state is itself uni-
versal. For computation, it is not necessary to
project the generated cluster state into a square
lattice—rather, one would in general optimize
the detector settings required for the gate to
be implemented. For instance, with proper set-
tings, the cluster state can be projected into 1D
dual-rail wires along the cylinder, an efficient
resource for one-mode computation (8, 21) and
with possible two-mode interactions between
them [for details, see supplementary text sec-
tion 1.4 (23)]. Doing so requires fast control of
the measurement bases in between temporal
modes, whereas in this work, the cluster state is
measured in fixed bases for state verification.
Multipartite cluster state inseparability can

be witnessed through the measurement of the
uncertainties of the state nullifiers—linear com-

binations of position andmomentumoperators
for which the cluster states are eigenstates with
eigenvalue 0. For example, for the ideal two-
mode EPR state, the well-known nullifiers
are n̂EPR

x ¼ x̂A " x̂B and n̂EPR
p ¼ p̂A þ p̂B be-

cause n̂EPR
x jEPRi ¼ 0 and n̂EPR

p jEPRi ¼ 0. For
our 2D cluster state, j2Di, the nullifiers consist
of eight modes and are given by

n̂k
x ¼ x̂k

A þ x̂k
B " x̂kþ1

A " x̂kþ1
B " x̂kþN

A

þ x̂kþN
B " x̂kþNþ1

A þ x̂kþNþ1
B ð1Þ

n̂k
p ¼ p̂k

A þ p̂k
B þ p̂kþ1

A þ p̂kþ1
B " p̂kþN

A

þ p̂kþN
B þ p̂kþNþ1

A " p̂kþNþ1
B ð2Þ

as n̂k
xj2Di ¼ 0 and n̂k

pj2Di ¼ 0 [derived in
supplementary text section 1.3 (23)], where
the subscript indicates the temporal mode
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Fig. 1. Scheme of 2D cluster state generation. Squeezing is produced by two
OPOs (OPOA and OPOB), and coupled into fiber with 97% coupling efficiency.
There, temporal modes are interfered with fiber-coupled beam splitters to
generate a 2D cluster state. The corresponding graph is shown: Temporal modes
of squeezing with mode index k in two spatial modes A and B (bright and dark
nodes) are interfered to generate EPR states at BS1. The EPR pairs are entangled
to form a 1D cluster state using a t delay in mode B and BS2, and the 1D cluster
state is curled up to a 2D cluster state by another delay of Nt and BS3. Using

homodyne detectors (HDA and HDB), the temporal mode quadratures are
measured, from which the nullifiers are calculated. In the experimental
implementation, the short delay is a 50.5-m fiber leading to temporal modes of
247-ns duration, whereas the long delay is a 606-m fiber such that N = 12, as
shown in the illustrated graph. The temporal modes are defined by an
asymmetric-shaped temporal mode function within the 247-ns duration, which
filters out low-frequency noise and leads to less than 10"3 mode overlap (11).
For more information, see material and methods (23).

Fig. 2. Universality of the generated 2D cluster state. (A) Graph of the
generated 2D cluster state. Measuring the nodes marked by red in the position
basis removes all edges connected to the measured nodes, and the cylindrical
graph unfolds to a plane. (B) Resulting plane 2D cluster state after the projective
measurements in (A), consisting of two bilayer square lattices (double BSL)

connected by edges of weight 1/2. (C) Single BSL after projective measurement
of half the modes in (B) in the position basis. (D) Square lattice (SL) after
projective position measurements of all modes in spatial mode B (dark nodes),
and applying the Fourier gate (p/2 phase delay) on half the modes in spatial mode
A (bright nodes). This SL is a traditional universal resource state for MBQC.
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CV entanglement between 1 million mode

Bell state

∫ |x⟩ |x⟩dx|0⟩ |0⟩ + |1⟩ |1⟩

EPR state
1 e-bit  e-bit≈ (log n̄ + 1)



Challenges (yet)

Optimal control and implementation?

Programming CV or 
qubit-bosonic systems?

Translating algorithms 
from qubit to CV?
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Should we give them more attention?

Bosonic systems: 
- Everywhere

- More freedom

- More entanglement

- Platform advantages
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