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Abstract

We introduce corrections to the Navier–Stokes equation arising from the transitions between molecular states and the injection of external
energy. In the simplest application of the proposed post-Navier–Stokes equation, we find a multi-valued velocity field and the immediate possibility
of velocity reversal, both features of turbulence.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Traditionally, any attempt to describe turbulent behavior in
fluids starts with the Navier–Stokes equation (NSE) [1]. How-
ever, success has at best been mixed [2]. In this Letter, we
explore the idea that NSE is not the unique approach to the
study of turbulence, and that turbulence may be found in what
we label as post-Navier–Stokes equations. What could mod-
ify NSE? In our opinion, the molecular nature of fluids can
no longer be ignored [3–8]. In fact, quantum kinetic theories
have already been proposed starting with the classic work of
Chang and Uhlenbeck [9]. A comprehensive summary is given
by Klimontovitch [10]. The usual approach is to modify the col-
lision term of the Boltzmann equation to include internal exci-
tations of molecules. A quantum approach becomes necessary.
As a consequence of changing the collision term, new terms
in the hydrodynamic description modify the usual continuum
model. The continuum model ignores the role of molecular ex-
citations. There have been several attempts to study the change
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in the transport equation including the Navier–Stokes equation
[11,12].

In this Letter, we follow the studies of Bardos et al. [11]
with the specific purpose of addressing the problem of turbu-
lence. We also attempt to modify NSE by including quantum
concepts and, in the simplest application of our approach, arrive
at the possibility of velocity reversal and multi-valued velocity
fields, both important features of turbulence. Before showing
these final results, we need to make two comments on the clas-
sic derivation of NSE to justify our post-NSE.

The traditional way of deriving the Navier–Stokes equation
(NSE) is phenomenological, based on the continuum model and
conservation of momentum. It may also be derived using the
kinetic theory of structureless molecules by starting with the
Boltzmann transport equation

(1)

(
∂

∂t
+ pi

m

∂

∂xi

+ Fi

∂

∂pi

)
f (r,p, t) =

[
∂f (r,p, t)

∂t

]
coll

,

where we follow the conventional definitions from Huang [13].
For the purpose of differentiating our approach to arrive at post-
NSE equations, we quickly comment on the assumptions of the
derivation.
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First, collisional invariants χ are defined such that

(2)
∫

d3p χ(r,p)

[
∂f (r,p, t)

∂t

]
coll

= 0.

These collisional invariants are χ = m (mass), χ = mvi (i =
1,2,3 momentum), χ = 1

2m|v − u(r, t)|2 (thermal energy),
where u(r, t) = 〈v〉.

To get the NSE, multiply the Boltzmann transport equation
by p and integrate over all momentum, yielding

(3)ρ

(
∂

∂t
+ u · ∇

)
u = ρ

m
F − ∇ · P,

where ρ(r, t) = mn(r, t) and Pij = ρ〈(vi − ui)(vj − uj )〉. Our
first comment is that the above equation results from micro-
scopic conservation laws assuming elastic collisions of point
molecules.

To arrive at the traditional NSE, we need an explicit form of
the pressure tensor, which is taken to be

(4)Pij = δijP − μ

[(
∂ui

∂xj

+ ∂uj

∂xi

)
− 2

3
δij∇ · u

]
,

where μ is the viscosity. The above choice of the pressure is
justified by the assumption that a fluid element, or microscopi-
cally, as our second comment, the particle of the model has no
intrinsic angular momentum.

In full component form, the Navier–Stokes equation is

ρ

(
∂

∂t
+ uj

∂

∂xj

)
ui

(5)= ρ

m
Fi − ∂

∂xj

(
δijP − μ

[(
∂ui

∂xj

+ ∂uj

∂xi

)
− 2

3

∂uj

∂xi

])
.

Notice that before the introduction of the definition of the
pressure, the conservation of momentum equation is exact in so
far as the Boltzmann transport equation is valid. This equation
comes only from the left-hand side of the Boltzmann equation.
The contribution from the collision term disappears by virtue of
conservation of momentum and the assumption of elastic colli-
sions. Hence, only the left-hand side of the Boltzmann transport
equation is important to yield the conservation of momentum
equation and NSE. We stress the two assumptions needed to ar-
rive at the Navier–Stokes equation: first, elastic collisions, and
second, the absence of angular momentum of the structureless
molecules. What will happen if these two assumptions are no
longer valid?

2. Generalizing the Navier–Stokes equation

Suppose that each of the molecules could be found in any
one of N states, the ground state and (N −1) excited states. As-
sume that excitations and de-excitations are induced by molecu-
lar collisions, which are now inelastic. Then the semi-classical
analogue of the Boltzmann transport equation for each of N

distribution functions will be

(6)

(
∂

∂t
+ pi

m

∂

∂xi

+ Fi

∂

∂pi

)
fn(r,p, t) =

[
∂fn(r,p, t)

∂t

]
inelastic

,

where the collision term might be replaced by[
∂fn(r,p, t)

∂t

]
inelastic

(7)=
N∑

m �=n

γmnJfm(r,p) −
N∑

m �=n

γnmJfn(r,p) + σKfn(r,p).

γmn is the transition probability of a particle in the m state
jumping to the n state. J is a “jump” operator that will carry the
conservation law the we will invoke in the time evolution of N

distribution probabilities. K is a “kick” operator that allows the
injection of energy from outside [14–17]. σ is the probability
that a particle is kicked to a different momentum by external
means. The kick operator makes the injection of energy into
the system possible. Eq. (6) is a generalization of our previous
models [14–17].

To calculate macroscopic averages, not only must we inte-
grate over all momentum, we should also sum over all N states,
to yield

(8)ρ

(
∂

∂t
+ u · ∇

)
u = ρ

m
F − ∇ · P + driving + radiative,

where

(9)driving = σ

N∑
n=1

∫
dp3 pKfn(r,p),

(10)

radiative =
N∑

n=1

∫
dp3 p

[
N∑

m �=n

γmnJfm(r,p)

−
N∑

m �=n

γnmJfn(r,p)

]
.

We may think of (9) and (10) as the quantum corrections
to the NSE. The first sum (9) is the driving term. We will
call the second sum (10) the radiative correction because every
transition is accompanied by radiation. (NSE ignores not only
molecules, but also photons.) The radiative term represents the
contribution of the internal degrees of freedom of molecules
to the macroscopic flow of a fluid. If all the transition proba-
bilities, σ and γmn are zero, we simply reproduce the classical
NSE. This last equation, our post-NSE, no longer assumes elas-
tic collisions and the absence of angular momentum of the par-
ticles. The operators J and K have been defined in our earlier
model calculations [14–17], they may be redefined with new
models, but we will simplify them to show that even the sim-
plest application of Eq. (8) leads to novel results.

We have had occasions to consider the radiative term
[14–17], and will consider them later even more, but for now
to arrive at immediate new results, we consider only the influ-
ence of quantized kicks defined by the operator Kfn(r,p) =
fn(r,p − Π) yielding

(11)
∫

dp3 pKfn(r,p) = mu + n(r, t)Π.
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Fig. 1. Average velocity as a function of the angle for the torus geometry. The
principal branch is complemented by the other branches which almost form a
continuum.

3. Examples

Remove the force F and drop the divergence of the pressure
to obtain a non-linear equation in one dimension

(12)
∂u

∂t
+ 1

2

∂u2

∂x
− σu = σΠ

m
.

It is the simplest application of our post-NSE but which remains
a challenge still.

The stationary solution is to be obtained from

(13)
1

2

∂u2

∂x
− σu = σΠ

m
,

which is

(14)u(x) = −Π

m

[
Wk

(
− m

σΠ
e− mσ

Π
(x+C)−1

)
+ 1

]
,

where C is a constant and Wk denotes the kth branch of the
Lambert W function. The function Wk(z) is a solution of the
equation wew = z in the complex plane [18]. The Lambert W
function is multi-valued, making the stationary average veloci-
ties multi-valued.

We will choose a toroidal geometry, and put x = L sin(2πθ),
0 � θ < 1, to ensure periodic boundary conditions. The physi-
cal model is one-dimensional, a donut of circumference 2πL.
One could imagine a paddlewheel half-stuck into the donut
to provide quantum kicks to the fluid. If u(θ = 0) = 0, then
C = − Π

σm
lnΠ and we get

(15)uk(θ) = −Π

m

[
Wk

(
−m

σ
e− mσ

Π
L sin(2πθ)−1

)
+ 1

]
.

We plot uk(θ) in Fig. 1 for k = 0,±1, . . . ,±5.

Fig. 2. The transient problem with σ = 0.1, m = 1, Π = 1, and f (x) = cos(x)2.
Left: The characteristics cross at about t = 1. Right: The solution surface
u(x, t) folds on itself and becomes multi-valued where the characteristics cross.

Using the method of characteristics, we now find the tran-
sient solutions of

(16)
∂u

∂t
+ 1

2

∂u2

∂x
− σu = σΠ

m
, u(x,0) = f (x),

where f (x) are the initial velocity averages. Rewriting (16) as
u∂u

∂x
+ ∂u

∂t
= σu + σΠ

m
, we identify its characteristic equations,

(17)x′(τ ) = u(τ), t ′(τ ) = 1, u′(τ ) = σu(τ) + σΠ

m
.

The boundary conditions can be parameterized as

(18)x0(s) = s, t0(s) = 0, u0(s) = f (s).

For each fixed value of s, solving the characteristic equa-
tions (17) with initial values x(0; s) = x0(s), t (0; s) = t0(s),
u(0; s) = u0(s) yields a characteristic curve u(x(τ ; s), t (τ ; s))
in the solution surface u(x, t). For more on the method of char-
acteristics, see for example [19].

The solution u(x, t) is

(19)u(x, t) = eσ t

(
Π

m
+ f (s)

)
− Π

m
,

(20)x = s + f (s)
eσ t − 1

σ
+ Π

mσ

(
eσ t − σ t − 1

)
,

where s is defined implicitly by the second equation. While it
is not in general possible to express u(x, t) explicitly, we can
still interpret the solution in terms of the characteristic curves
u(x(t; s), t).

Depending on the problem parameters σ , m, Π , and f (x),
it is possible that the characteristic curves cross. If the charac-
teristics cross at (xc, t), then there are multiple curves s1, s2, . . .

such that xc = x(t; s1) = x(t; s2) = · · · . Moreover, the solution
permits multiple values u(xc, t) = u(x(t; s1), t), u(x(t; s2), t),

. . . at the crossing point. Fig. 2 demonstrates this feature in a
simple example.

4. Conclusions

It appears that in our first applications of a highly simplified
post-Navier–Stokes equation, we have arrived at multi-valued
velocities as a function of location. They may well be inter-
preted as possible states of a turbulent system from which
transitions to other states may be possible. The possibility of
velocity reversal, a feature of turbulence, is immediately ob-
vious. This result seems to be the first instance of an analytic
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derivation of a multi-valued velocity field and deserves further
studies.
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