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A. TS INOBER1 AND S. YORISH1

1Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

2Institute of Environmental Engineering,
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This is a report on a field experiment in an atmospheric surface layer at heights between

0.8 and 10 m with the Taylor micro-scale Reynolds number in the range Reλ= 1.6 −

6.6 · 103. Explicit information is obtained on the full set of velocity and temperature

derivatives both spatial and temporal, i.e. no use of Taylor hypothesis is made. The report

consists of three parts. The present first part is devoted to the description of facilities,

methods and some general results. The latter are twofold. The first kind of results is

similar to the ones reported before and allows to gain confidence in both old and new

data, since it is the first repetition of this kind of experiment at better data quality. The

second kind are the results which were not obtained before, the typical example being the

so-called tear drop R−Q plot and several others. The second part, Gulitski et al. (2006a),

concerns accelerations and related matters. Finally the third part of our work, Gulitski

et al. (2006b), is devoted to the issues concerning temperature with the emphasis on joint
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statistics of temperature and velocity derivatives. The results obtained in this research

are quite similar to those obtained in experiments in laboratory turbulent grid flow and

in DNS of Navier–Stokes equations at much smaller Reynolds numbers Reλ∼ 102, and

this similarity is not only qualitative, but to a large extent quantitative. This is true of

such basic processes as enstrophy and strain production, geometrical statistics, the role

of concentrated vorticity and strain, reduction of nonlinearity and nonlocal effects. An

important point is that the present experiments went far beyond the previous ones in

two main respects. The first one is that all the data were obtained without invoking the

Taylor hypothesis, and therefore a variety of results on fluid particle accelerations became

possible. The second is simultaneous measurements of temperature and its gradients with

the emphasis on joint statistics of temperature and velocity derivatives. Both are reported

in parts II and III following this one.

1. Introductory notes

The research reported in the present paper is based on two premises. ,The first one is

the need of information on velocity and temperature derivatives, and the second is the

need to get this and other information at large Reynolds numbers.

Velocity derivatives, Aij = ∂ui/∂xj , are known to play an outstanding role in the

dynamics of turbulence for a number of reasons. Their importance has become especially

clear since the papers by Taylor (1937, 1938) and Kolmogorov (1941a,b). Taylor em-

phasized the role of vorticity, i.e. the antisymmetric part of the velocity gradient tensor,

Aij = ∂ui/∂xj , whereas Kolmogorov stressed the importance of dissipation, and thereby

of strain, i.e. the symmetric part of the tensor Aij . Fluid particle acceleration is another

important kind of velocity derivatives. Recently it attracted considerable attention (see
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Vedula & Yeung 1999; Vedula et al. 2001; Crawford et al. 2005; Mordant et al. 2003,

2004a,b,c; Tsinober et al. 2001, and references therein).

Among the main difficulties in turbulence research, in general, and applications, in

particular, is that they are characterized by high values of Reynolds numbers inaccessi-

ble in the foreseeable future neither in laboratory nor via direct numerical simulations.

On the other hand information on such turbulent flows is of utmost importance both

for basic research and applications. This information includes all three components of

turbulent velocity fluctuations, ui, all nine components of the spatial velocity gradients

tensor, ∂ui/∂xj , and its time derivatives, ∂ui/∂t, with synchronous data on fluctuations

of temperature, θ, its spatial gradient, ∂θ/∂xj , and temporal derivative, ∂θ/∂t, along with

the corresponding data on the mean flow. Having such information allows to address a

number of important issues associated with vorticity and strain, vortex stretching and

enstrophy production, surrogates versus true quantities, geometrical statistics, properties

of fluid particle accelerations and random Taylor hypothesis, and a number of key issues

of the behavior of passive scalars in large Reynolds number turbulent flows, which up

to recently were essentially inaccessible, such as joint statistical properties of the field of

velocity derivatives, i.e. rate of strain tensor, sij , and vorticity, ωi, and the temperature

gradient, ∂θ/∂xj .

The central goal of the reported effort is the question how large Reynolds numbers one

needs to study the basic physics of turbulence. It appears that the high Reynolds number

results are qualitatively, if not quantitatively, the same as previous low Reynolds number

results, i.e. it is not always necessary to have high Reynolds numbers to study the basic

physics of turbulence. This means that concepts like inertial range and similar ones were

most probably pretty oversold. Another aspect is that it is good news both for experi-

ments and DNS, as people won’t always have to push to higher Reynolds numbers. From
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the technical point the main aims were directed to essential improvements of various

components of the experimental facility. The most important among them is the pos-

sibility to employ the multi-hot-wire technique without invoking the Taylor hypothesis,

and thereby to access the fluid particle accelerations and a variety of its Eulerian com-

ponents, with simultaneous access to temperature and its derivatives, and thereby the

possibility to obtain experimentally joint statistics of velocity and temperature gradients.

In order to achieve reasonably high Reynolds numbers and to get access to velocity

derivatives it is necessary to perform field experiments, as reported by Kholmyansky &

Tsinober (2000); Kholmyansky et al. (2000, 2001a,b); Galanti et al. (2003). Though most

of these experiments were performed using the Taylor hypothesis, a successful attempt

was made to check the possibility of measuring all spatial derivatives without invoking

the Taylor hypothesis (Kholmyansky et al. (2001b)). Later a similar experiment with

simultaneous measurements of temperature fluctuations and their spatial derivatives was

performed (Galanti et al. (2003)). This opened the possibility to access the corresponding

temporal derivatives and consequently the fluid particle accelerations.

The field experiments mentioned above were performed on the ground of the Kfar

Glikson kibbutz, few kilometers to the north-east of Pardes-Hanna, Israel. Being a good

site with regards to wind velocity and topography, the wind had a rather large directional

variability (see below) leading to reduced data quality. This was one of the main reasons

to look for a site with much more stable wind direction as appeared to be the Sils-Maria

site in Switzerland. The main bulk of the results reported below was obtained at this

site.

Our report is divided into three parts. The present first part is devoted to the de-

scription of facilities, methods and some general results. The latter are of two kinds.

The first kind are results similar to the ones reported before (Kholmyansky & Tsinober
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(2000); Kholmyansky et al. (2000, 2001a,b); Galanti et al. (2003)). They allow to gain

confidence in both experiments, since it is the first repetition of this kind of experiment

and of better quality. The second kind are the results which were not obtained before,

the typical example being the so-called tear drop R−Q plot and several others.

The second part of our report, Gulitski et al. (2006a), concerns accelerations and re-

lated matters. It includes a variety of results on convective, local and other “components”

of fluid particle accelerations, such as variances, correlations and geometrical statistics.

Finally the third part of our work, Gulitski et al. (2006b), is devoted to issues con-

cerning temperature, with the emphasis on joint statistics of temperature and velocity

derivatives.

2. Experiments description

The results described below are based on the data, obtained in field experiments in

the atmospheric surface layer and in laboratory experiments with a jet facility. The

measurement system used allows to obtain all three components of the velocity fluctu-

ations vector, ui, all nine components of the spatial velocity gradient tensor, ∂ui/∂xj ,

and the temporal velocity derivatives, ∂ui/∂t, with synchronous data on fluctuations of

temperature, θ, its spatial gradient, ∂θ/∂xj , and temporal derivative, ∂θ/∂t, along with

corresponding data on the mean flow.

The most essential components of the experimental system are a multi-hot/cold-wire

probe, a 20-channel hot-wire anemometer, a 5-channel cold-wire thermometer, a data

acquisition and processing system and an automatic three-dimensional calibration unit

with corresponding calibration procedure, including software.
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Figure 1. The multi-hot/cold-wire probe. a - Assembled probe. b - Micro-photograph of the

tip of the probe. c - Tip of individual hot-wire array. d - Schematic of the position of the arrays

1–4 relative to the central array 0.

2.1. Probe

The basic element of our multi-wire probe (Fig. 1) is an array. It consists of four hot-

wires, forming a pyramid. Each wire is welded to a pair of prongs, providing support and

electrical connection for the hot-wires, see Fig. 1c. The typical length of a wire is 0.6 mm,

its diameter is 2.5 µm. The diameter of a typical array is a little less than 1 mm, and the

separation between the arrays is 1.2 mm. Each wire is connected to a separate channel

of a hot-wire anemometer. Five parallel arrays, combined in a cross-like configuration

(Fig. 1d), form a probe.

Each array of the calibrated probe gives three components of the velocity vector, that

can be related to a certain point in the tip of the array. The distance between the arrays

is small (overall size of the tip of the probe is about 3 mm, i.e. less then five Kolmogorov
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scales under the flow conditions described in Kholmyansky et al. (2001a,b))†. Therefore

the differences between the values of the velocity components from properly chosen arrays

can be used to estimate lateral and vertical space derivatives. The space derivatives in

the longitudinal direction can be obtained from time differences, using Taylor hypothesis.

Such a probe was successfully implemented in laboratory and field experiments (Tsi-

nober et al. (1992, 1997); Kholmyansky & Tsinober (2000); Kholmyansky et al. (2001a,b)).

Though the probe, which consists of 20 hot-wires in five four-wire arrays, seems to be

‘crowded’ with many wires and prongs, it does not cause more serious flow disturbances

than usual hot-wire probes (see, e.g., Tsinober et al. (1992)). Indeed it is essentially

empty: the volume of solid material in the proximity of the probe tip is about 1% only

of the volume of the tip. This is achieved mainly by using thin prongs with tips of about

0.025 mm thickness, see Fig. 1.

Several essentially new developments and significant improvements were introduced in

the probe as compared to the previous experiments (Busen et al. (2001); Kholmyansky

& Tsinober (2000); Kholmyansky et al. (2001a,b)). The first one is a probe allowing

to estimate the spatial derivative in the streamwise direction independently of the time

derivative, i.e. without invoking the Taylor hypothesis (Galanti et al. (2003); Kholmyan-

sky et al. (2001b)). This is achieved by designing a five-array probe with the central

array shifted out forward in the streamwise direction by approximately 1 mm. Such a

probe allows to estimate all the three velocity components at two streamwise positions

simultaneously: one at the tip of the shifted array, and the other in the plane of the four

other arrays via interpolation of the four values obtained from these four arrays. The

probe of this type was used in a field experiment (Galanti et al. (2003); Kholmyansky

† In the reported measurements the Kolmogorov length was in the range 0.35− 0.76 mm, see

Table 1 below. Hence the tip of the probe was from 3.9 to 8.6 Kolmogorov lengths.
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et al. (2001b)) where spatial derivatives, based on the Taylor hypothesis, were com-

pared with the ones, measured directly. Moreover, it became possible to get estimates

of the full (Lagrangian) acceleration and its (Eulerian) ‘components’, al = ∂u/∂t and

ac = (u · ∇)u.

A further important step was the attachment to the probe of cold-wires for temperature

measurements. Each array was completed with a separate cold-wire thus forming a 25-

wire probe. In addition to three velocity components, nine components of the spatial

velocity gradient tensor and three components of temporal velocity derivatives, the new

probe can also measure temperature, three components of temperature gradient as well

as temporal derivative of temperature (all without invoking the Taylor hypothesis).

At this first stage the cold-wires were of the same diameter as the hot-wires, namely

2.5 µm, therefore the frequency bandwidth of the temperature measurements was less

than the one for the velocities: while the channels of the anemometer had flat frequency

response in the band of about 4 kHz, for the thermometers such band lasted only to about

300 Hz. We plan to manufacture probes with thinner wires for further experiments.

Incorporation of cold-wires into a probe required special efforts to minimize the effects

of their heating by the hot-wires. Though cold-wires are very close to the hot-wires of the

corresponding array (about 0.2 mm ahead from its tip), no direct heating of the cold-wires

was observed even at very low flow velocities. But the prongs, supporting the cold-wires,

were heated and transferred this heat to the wires through thermal conduction. This

problem was solved by shaping the cold-wire prongs in a way that they were far enough

from the hot-wires with their prongs in the vicinity of the tip of the probe, see Fig. 1a,b.

The described solution did not prevent the heating of the cold-wire prongs, it only

drastically decreased the heat transfer from the prongs to the cold-wires. But the varying

heating and cooling (by the flow) of the prongs resulted in variations of their temperature
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and therefore resistance. The resistance of the prongs was measured by the thermometer

together with that of the cold-wires. If not constant, it caused errors in the temperature

data.

In order to reduce such errors to a tolerable value we replaced the prongs’ material

from tungsten to manganin: the temperature coefficient of the electrical resistance of

manganin is 400 times smaller than that of tungsten. The hot-wire prongs in the new

probes were also made of manganin. Such probes were used in the reported experiments.

An additional advantage was the improvement of their life span.

2.2. Calibration

The calibration of the multi-wire probe consists of two main steps:

• obtaining calibration data, using the calibration unit, data acquisition equipment

and software (field calibration);

• processing the calibration data to calculate calibration coefficients.

Calibration coefficients are used to transform the voltages recorded in the measurement

runs into physical values, in our case components of the velocity vector.

The function of the calibration unit (Fig. 2) is to place the probe in a flow with velocity

of known and variable value at various angles with respect to two orthogonal axes. Re-

sistances of hot-wires are low, therefore small changes of contact resistance in connectors

may affect the calibration characteristics and produce errors in measured velocity values.

Such errors are especially dangerous because these velocity values, taken at close points

within a probe, are used to calculate velocity differences and space derivatives, and even

small errors in measured velocities may result in high errors of the differences. To avoid

errors of this kind the calibration has to be performed with the probe connected to its

cable in its working position.
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Figure 2. The calibration unit. a - Schematic. b - Interior (container removed).

Fig. 2a shows the flow in our calibration unit. The flow is produced by suction, therefore

we avoid its heating by pumping. The calibration flow is a jet formed by a nozzle. When

suction is on, the atmospheric air enters the container through a filter, covering openings

in its side wall. From there the air enters the jet unit that consists of a contractor,

a honeycomb and a nozzle. The flow passing through these elements forms a jet with

uniform velocity profile around its axis and low level of fluctuations. The outlet of the

nozzle, where the tip of the probe is located, opens to a suction chamber.

In order to allow three-dimensional calibration, the jet unit can be rotated around two

orthogonal axes: it is mounted on a high-precision gimbals mechanism. The rotation of

the gimbals is performed by two similar units, each including a motor, a gear assembly

and a synchronous resolver that serves for the measurement of the angle of rotation.

The value of the velocity magnitude in the jet is obtained by measuring pressure

difference at two cross-sections of the nozzle using an electronic differential manometer.

The velocity can be calculated using Venturi’s formula.

The field calibration is controlled by a computer program. Usually it is performed at

49 angular positions within a spatial angle of up to 35◦. At each position the calibration

data are taken at ten velocities within a specified range. Therefore the calibration data
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contain 490 samples. The duration of such a calibration is about 10 min. The sample

consists of the values of velocity magnitude, two angles, twenty readings of the hot-wire

channels and five readings of the thermometer channels.

The field calibration includes also a simple step of determining the sensitivity of the

thermometer channels: a preset jump in the bridge resistance is activated, and the ther-

mometer outputs are recorded before the jump and after it. Thus we obtain the gain of

the channels. Knowing the resistance of the cold-wires at certain temperature and the

temperature coefficient of the electrical resistance of their material (tungsten), we can

calculate the sensitivity.

Simultaneous temperature data, recorded during the calibration and the measurement

run, make it possible to implement a correction of hot-wire data distorted by tempera-

ture variations. The output of the hot-wire channel depends on the temperature of the

flow, and this dependence is well approximated by a linear function. Though the flow

temperature fluctuations are small relative to the temperature of hot-wires (which is of

the order of 200◦C), even small errors in the velocity values, correlated with temper-

ature, can distort the joint velocity–temperature statistics. Therefore the correction is

important.

We measure the coefficient in the linear function mentioned above (separately for each

hot-wire channel). A small heating element is installed in the jet unit of the calibration

device. At the final stage of the field calibration the heating element is activated several

times for a short period of time, thus producing a series of heat pulses. The outputs of the

hot- and cold-wire channels are recorded during each pulse. The coefficients in question

can be found from linear regression of each hot-wire channel on the corresponding cold-

wire one.
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The processing of the calibration data to calculate calibration coefficients is performed

by least-square approximation of the calibration data by multi-dimensional polynomials

of Chebyshev type.

The space derivatives in the lateral and vertical direction were calculated using the

differences of the velocity values from the corresponding pair of arrays (excluding the

central one), divided by their separation. The longitudinal derivatives were calculated

using the time differences (Taylor hypothesis) and also using true space differences, as

described above in the paragraph on the improvements of the probe, on page 7.

Jet facility. The calibration unit, in addition to its direct function, is used as a

main part of a jet facility. This facility is built for performing laboratory experiments in

turbulent jet flow, including the ones in a slightly heated jet. The measurements started

recently and we have only some preliminary results that will be reported in Part III of

the present work.

2.3. Performance and other tests of the system

One of the hard difficulties in using multi-hot-wire systems is the complexity of estima-

tion of errors, mostly coming from the calibration process when full three-dimensional

calibration is employed. It is noteworthy that these errors should be distinguished from

the instrumental noise, which in our case was relatively small as compared to the calibra-

tion errors. The complexity of such estimation comes not only from the non-linear nature

of the hot-wire anemometer, but also and mainly from the existence of singularities in the

function, approximating the calibration data. Though this fact is known in the literature

dedicated to the multi-wire calibration, it was not analyzed mathematically in a rigor-

ous manner. Dr. B. Youssin in an unpublished paper (Youssin (2003)) made a rigorous

mathematical analysis of an idealized probe (geometrical identity of the wires, King law).

The main point is that since the individual wires sense mostly the velocity, normal to
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them, the relations between the anemometer outputs and velocity components are not

invertible when the angle, γ, between the instantaneous velocity vector and the probe

axis exceeds some value around 35◦. It was found that there was a strong dependence of

the calibration errors on this angle and fast growth of the errors when the velocity vector

approaches the singular points, located somewhere outside the cone with half-width of

35◦. This was one of the reasons we wanted so much to perform our experiments in the

Swiss site where the range of the angle, γ, was much smaller.

The complexity, mentioned above, led us to follow the approach as described in section

2 in Tsinober et al. (1992), where a series of checks was undertaken in order to evaluate the

performance of the system with some emphasis on the multi-hot-wire probe performance.

These and additional checks were made in our later works (Galanti et al. (2003, 2004);

Kholmyansky & Tsinober (2000); Kholmyansky et al. (2000, 2001a,b)). On top of the

checks made in Tsinober et al. (1992) and later papers we made a number of additional

ones. We will mention the main of the former briefly, while the latter in more detail

below.

(a) Check of the raw data. For each of the twenty hot-wire signals (and five cold-wire

ones) histograms were plotted. Each point located outside the main bell of the histogram

was inspected. In many cases such points were sharp jumps out of a smooth curve of the

signal. The jumps could be caused by a particle or a water drop hitting the wire and were

corrected by interpolation. Similar check was then performed for the differences between

the sequential points that permitted further elimination of artificial jumps in the signal.

(b) Check of the velocity data. Each velocity component from each array was similarly

inspected for jumps (caused by the same reasons, but not detected by the check of the

raw data) and corrected by interpolation when necessary. Then for each array angles,

γ, between the instantaneous velocity vector and the axis of the probe were calculated.
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Sometimes segments of run were detected where the values of γ exceeded the calibra-

tion range (±35◦) and therefore came close to the singular points. Such segments were

excluded from further processing.

(c) Criteria for the run evaluation. Several criteria were applied to evaluate the quality

of each run.

• Approximation errors. The program, calculating the calibration coefficients, calcu-

lates and prints the value of χ2, characterizing the quality of the approximation. We

use the estimate of the error as (χ2/N)1/2, where N – is the number of calibration

points. Though this estimate is rough and relates to the whole run, we know that

when its values reach tens cm/s, the run does not deserve further processing.

• The scatter of the mean and the RMS values of the velocity components from

various arrays.

• The ratio of the variances of the velocity derivatives, ∂uj/∂xk, to that of ∂u1/∂x1

in comparison with the values for isotropy. Though one cannot claim perfect isotropy

(even local) and shall not rely on it, still very high deviations point to poor data

rather than to anisotropy.

• An important check is the one based on the continuity equation. Namely, for

A = ∂u1/∂x1 and B = −∂u2/∂x2 − ∂u3/∂x3 the correlation coefficient between A

and B is a very sensitive indicator of the quality of the data. Theoretically it should

be 1, but in the best known measurements it does not exceed 0.6-0.7. Much lower

values point to a problematic run. In present experiments this correlation coefficient

was typically better.

(d) Data selection. Even when all above-mentioned checks show reasonable quality of

the run, some quantities, most sensitive to the calibration errors, show good results only
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Figure 3. Two “in one point” probes. a - a four-wire and a single-wire probe; b - two

four-wire probes.

after the selection of the samples corresponding to the relative divergence less than 0.1.

The example is the tear-drop plot shown in Fig. 11.

(e) A rather special check was made with “two probes in one point” initiated in Tsi-

nober et al. (1992). The check consisted of comparing a four-wire array with a single

wire (put in “one point” as shown in Fig. 3a, and described in more detail in Tsinober

et al. (1992)). The main result is that the correlation coefficient between the streamwise

velocity fluctuations measured by the two is very close to 0.99. This result is important

not only as an evidence of performance of the four-wire array, but also of the calibration

procedure as well.

A more elaborate and new check was made with two four-wire arrays again put in “one

point” as shown in Fig. 3b (Tsimanis (2005)). The correlation coefficient in this check

was over 0.98 for the streamwise velocity fluctuations and 0.96 for the transverse velocity

fluctuations measured by the two probes. We show also two examples of the corresponding

joint PDFs, Fig. 4. We mention that both measurements were made with the probe of

the scale at the tip about 1.5 mm (in our field experiment each array was less than 0.9



16 Gulitski, Kholmyansky, Kinzelbach, Lüthi, Tsinober and Yorish

Figure 4. Joint PDFs of streamwise (a) and transverse (b) components from two “in one

point” four-wire probes.

mm at the tip) in the region of the largest mean velocity gradient in out jet facility

mentioned above.

(f) A final remark is that recently we had an opportunity to make an overall check,

giving an indication about the performance of our system. In the course of an experiment,

performed in low-noise wind tunnel in the Aeronautics Department, Imperial College,

London, we found that the RMS values of the velocity components from each of five

four-wire arrays did not exceed 0.12%. This is only slightly higher than the known a

priory level of turbulence in the wind tunnel, estimated as 0.1%.

2.4. Equipment

The general layout of the experimental equipment is shown in Fig. 5a and the photo-

graph of the instrument rack — in Fig. 5b. We will relate shortly to the instruments not

described yet.

Anemometer channels. The hot-wire anemometer channel is a rather standard de-

vice. We used in our experiment a new 20-channel constant-temperature anemometer (2

in Fig. 5b), specially designed and manufactured for us. Its main feature is a symmetric
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Figure 5. The experimental equipment layout. a - Chart of signal connections. b - Instrument

rack: thermometer amplifier (1); anemometer channels (2); signal limiter (3); low-pass filters

and ‘sample & hold’ (4); power supply blocks (5).

bridge. In most cases three arms of the bridge are located in the anemometer itself, and

the appropriate hot-wire of the probe is connected to the bridge by a cable. The cable in-

troduces asymmetry (mainly inductive) into the bridge that is proportional to the length

of the cable. In order to prevent the excitation of oscillations in the circuit it is necessary

to limit the length of the cable. In the field experiment we have to work with relatively

long cables, and the circuit stability was reached by individual fitting of compensating

impedances in each channel.

In the new device only two arms of the bridge are internal. The other two (a hot-wire

of the probe and a constant resistor) are located outside, close to each other. They are

connected to the rest of the bridge symmetrically, by a shielded twisted-pair cable. The

new anemometer worked with 20 m cable without compensating circuitry and showed

good performance.

Five-channel thermometer. The thermometer was also specially designed and man-
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ufactured for our experiments. It consists of two blocks: the bridge and preamplifier block

(Thermometer in Fig. 5a) is located not far from the probe, and the thermometer am-

plifier (Fig. 5a and 1 in Fig. 5b) is in the field laboratory.

Data acquisition. In the course of a measurement run or field calibration all relevant

signals are recorded onto PC hard disk. The main component of our data acquisition

system is an input-output PC card (PCI-MIO-16E-1 from National InstrumentsTM),

supplemented with an SCXI chassis and modules (4 in Fig. 5b). We use low-pass filters

and ‘sample & hold’ modules. The filters (with cut-off frequency set at 4 kHz) are used as

an anti-aliasing device. The ‘sample & hold’ modules provide for simultaneous sampling

of all the channels, an important feature in multi-channel systems. The signal limiter (3

in Fig. 5b) is an auxiliary device preventing saturation of all the channels of the data

acquisition system in the case when one or more signals are far out-of-scale†. Any signal

within the scale passes this device unaffected. Any out-of-scale signal, entering the device,

exits it with the value of the corresponding scale limit.

2.5. Sites

The choice of the sites was one of the most complicated problems. The site must be

reasonably flat and homogeneous at least in the direction of the dominating winds. Nat-

urally, it has to satisfy certain logistic requirements.

Most of our preparatory work and first experiments were performed at the measure-

ment station, Fig. 6a,b, we erected in a field on the ground of the Kfar Glikson kibbutz,

few kilometers to the north-east of Pardes-Hanna, Israel. The site is rather flat in the

west-south-west direction, about 10 km to the sea shore, and the winds from there are

suited for the experiments.

The site is equipped with a specially designed mast. It is of a balanced boom crane

† This can happen, for instance, if some wires in the probe get broken.
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Figure 6. The experimental sites. a - Kfar Glikson, Israel, measurement position. b - Kfar

Glikson, calibration position. c - Sils-Maria, Switzerland.

configuration. The main boom of the mast can be rotated on the bearings around a

horizontal axis, positioned 2 m above the ground. The mast has very low vibration level

and permits convenient mounting of the probe and the calibration unit. The probe is

fixed on the top of the mast. In order to perform a measurement run, we lift the mast

with the probe, exposed to the wind, see Fig. 6a. In order to perform calibration we lower

the mast, attach the calibration unit to its boom in the way that the tip of the probe is

at the center of the nozzle outlet, and then lift the mast with the calibration unit again,

see Fig. 6b.

In August–September 2004 we performed a field experiment at another site, located

in Switzerland, at the outskirts of the village Sils-Maria, at the height of about 1800 m

above sea level. The site is a rather flat valley of more than 1 km width, surrounded by

two parallel mountain ridges. It is famous for the so-called Maloja wind (a very regular,

quite strong orographic wind, blowing along the valley from the village Maloja towards

Sils-Maria).

A preliminary experiment at this site was carried out in August 2003. Its purpose was

to get rough estimates of the characteristics of the Maloja wind, mainly the stability of
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its direction in the mean and the range of the direction fluctuations. Here we provide

a short account, more details are given in Rep (2003). The measuring instrument was

a three-component sonic anemometer that gave short (5 min) records of wind velocity

components as well as the temperature of the air. All the values were produced with a

space averaging over the base of the instrument (about 10 cm) at a sampling rate of

100 Hz. The records were made at several heights above the ground ranging from 0.85

to 3.6 m.

The preliminary experiment confirmed the expectation that the Sils-Maria site was a

good location for the micro-turbulent measurements. As an example we show in Fig. 7

the comparison of the total angle between the velocity vector, u, and the axis x1 direction

for the data from Kfar Glikson and Sils-Maria. The behavior of this angle is of utmost

importance: the precision of the velocities values obtained with the help of the calibration

data, as described above, is higher when this angle is small. The precision becomes very

bad if the total angle is higher than the calibration range of 35◦. One can see that the

Sils-Maria data are strongly concentrated within a rather small angle and practically do

not reach the dangerous high values. The Kfar Glikson data, on the contrary, are smeared

over a wide band of angles, and the impression is that the probability to pass the value

of 35◦ or even higher is not negligible.

The main experiment at the Sils-Maria site was performed in a configuration similar to

that of the Kfar Glikson experiments. For the first time the full probe, with the central

array shifted forward and containing also cold-wires, was used in the field. It was not

reasonable to bring our mast there or to build a similar one. Instead a lifting machine was

used, see Fig. 6c. The cradle of the lifting machine was removed, and a special interface

was designed and manufactured, permitting to fix the probe and the calibration unit to

the lifting machine in the way they were fixed to the mast.
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Figure 7. Time series of the total angle between the velocity vector, u, and the axis x1

direction (a) and the corresponding relative frequencies plot (b).

Profile measurements. Besides the equipment for microscale turbulent measure-

ments, described above, we used at the Sils-Maria site an independent system for mea-

surement of vertical profiles of wind velocity and temperature in a range of heights from

0.5 to 11.5 m. There were six fixed stations in this range. A single set of measuring

instruments was used: a sensitive cup anemometer and a resistance thermometer with

suction and radiation protection. This set was mounted on a carriage, rolling up and

down along a special mast, erected at the distance of about 30 m from the lifting ma-

chine. A controller (specially designed for the system) moved the carriage up the mast.

At each station the movement stopped, and after a pause (to let the readings reach the

steady-state) the values were measured and saved to a data logger. From the top station

the carriage returned to the lowest one, and the cycle repeated.

The obtained profiles show the background conditions of the runs, they are also used

for estimates of mean vorticity and strain (see § 3.1 below).
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Height U1 u′1 u′2 u′3 λ η · 103 ruw C Reλ·10−3

m m s−1 ms−1 ms−1 ms−1 m m

0.8 5.6 1.25 0.93 0.59 0.025 0.35 -0.34 0.56 1.6

1.2 5.6 1.05 0.89 0.54 0.032 0.43 -0.29 0.51 1.8

2.0 6.7 1.23 0.84 0.53 0.057 0.46 -0.34 0.59 3.7

3.0 6.8 1.12 0.84 0.62 0.059 0.53 -0.32 0.55 3.4

4.5 7.5 1.22 1.18 0.63 0.090 0.60 -0.35 0.64 5.8

7.0 7.5 1.04 1.04 0.62 0.096 0.63 -0.39 0.51 5.3

10.0 8.0 1.06 0.90 0.61 0.119 0.76 -0.36 0.59 6.6

Table 1. Basic information on the experimental runs. The notations are as follows: x1 - hor-

izontal streamwise, x2 - horizontal spanwise, and x3 - vertical coordinates respectively; ui -

corresponding components of velocity fluctuations, u′i - their rms values; λ = u′1/rms(∂u1/∂x1)

- Taylor microscale; ruw = 〈u1u3〉/σu1σu3 - correlation coefficient between the streamwise and

vertical components of velocity fluctuations; C - Kolmogorov constant from the power spectrum

of u1 in the inertial range: Eu1
1 (k) = C〈ε〉2/3k−5/3, where ε – is a dissipation rate.

3. Some general results

Though the emphasis of the present project (described in part II and part III) was on

accelerations and temperature, we present a number of results, similar to those published

previously (Galanti et al. (2003, 2004); Kholmyansky & Tsinober (2000); Kholmyansky

et al. (2000, 2001a,b)), with the focus on the quantities associated with velocity deriva-

tives. The main aim is to demonstrate similarities and differences along with important

additional information. The basic data on representative runs for several heights are pre-

sented in Tables 1 and 2. The thermal stability at the site, when our measurements were

performed, is discussed in part III, section “Some general results”. It can be described

as slight instability.
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Skewness Height, m ∂u1
∂x1

∂u2
∂x2

∂u3
∂x3

∂ui
∂xk

, i 6= k 〈ωiωksik〉
〈ω2〉〈s2〉1/2 − 〈sijsjkski〉

〈s2〉3/2

Measured 0.8 -0.46 -0.35 -0.29 0.01−0.14 0.16 0.23

Estimated 0.52 0.45

Measured 1.2 -0.64 -0.38 -0.22 0.03−0.15 0.19 0.26

Estimated 0.69 0.63

Measured 2.0 -0.54 -0.34 -0.36 -0.12−0.20 0.18 0.27

Estimated 0.61 0.57

Measured 3.0 -0.64 -0.43 -0.55 -0.11−0.08 0.20 0.29

Estimated 0.44 0.45

Measured 4.5 -0.51 -0.45 -0.25 -0.18−0.09 0.20 0.28

Estimated 0.67 0.64

Measured 7.0 -0.56 -0.42 -0.54 -0.02−0.25 0.20 0.36

Estimated 0.38 0.40

Measured 10.0 -0.68 -0.35 -0.44 -0.21−0.22 0.21 0.43

Estimated 0.39 0.44

Flatness ∂ui
∂xk

15
7
〈s4〉
〈s2〉2

9
5
〈ω4〉
〈ω2〉2

〈ω2s2〉
〈ω2〉〈s2〉 3 〈(ωksik)2〉

〈ω2〉〈s2〉

Measured 0.8 5.0−13 10.5 11.2 3.2 2.0

1.2 5.5−24 21 16 6.0 5.1

2.0 5.6−12 19 56 9.8 5.7

3.0 8.6−15 11 19 4.3 2.3

4.5 8.0−65 20 19 6.1 3.8

7.0 7.3−18 16 21 5.8 2.8

10.0 14.5−33 18 26 6.9 3.3

Gaussian 3 3 3 1 1

Table 2. Skewness and flatness (kurtosis) values of velocity derivatives. The row marked Esti-

mated in the table for skewness contains values of 〈ωiωksik〉/〈ω2〉〈s2〉1/2
and 〈sijsjkski〉/〈s2〉3/2,

that were obtained assuming the isotropic relations 〈ωiωksik〉 = −17.5〈(∂u1/∂x1)
3〉 and

〈sijsjkski〉 = (105/8)〈(∂u1/∂x1)
3〉.
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Figure 8. Skewness and flatness of the velocity derivatives. The plots are from the review by

Sreenivasan & Antonia (1997) with our results added. 1 – Van-Atta & Antonia (1980); 2 –

Antonia & Chambers (1980); 3-5 – Sreenivasan & Antonia (1997): 3 – plane jet, 4 – wake, 5

– atmospheric boundary layer; 6 – Kerr (1985); 7 – Gibson et al. (1970); 8 – Jimenes et al.

(1993); 9 – Kholmyansky et al. (2001a); 10 – present work.

It is seen that the skewness of the derivatives ∂u2/∂x2 and ∂u3/∂x3 does not differ more

than twice from the one of ∂u1/∂x1. Still this difference is rather high, the main reasons

likely to be responsible for this are the known difficulties to obtain odd moments (see

the scatter of the data in Fig. 8 from Sreenivasan & Antonia (1997)) and the additional

difficulty in obtaining transverse velocity derivatives. Also, noteworthy is the agreement

of these values and the ones of the flatness with those known from literature (e.g. see

the review by Sreenivasan & Antonia (1997) and Fig. 8). Slight deviation of some our

points for the flatness from the bulk of the data can probably be explained by a certain

under-resolution of the velocity derivatives.

3.1. RDT-terms

As mentioned, our main interest was in the field of derivatives of velocity fluctuations,

∂ui/∂xj . However, in order to limit ourselves to study of this field only, it was necessary to

estimate the influence of the processes, associated with the mean flow gradient, dU1/dx3,

on production of ∂ui/∂xj , i.e. production of enstrophy, ω2, and magnitude of strain, s2.
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Height, m 0.8 1.2 2.0 3.0 4.5 7.0 10.0

Max. ratio 0.003 0.003 0.001 0.002 0.0003 0.0003 0.0002

Table 3. Maximum absolute values of the ratio of the terms, associated with the mean flow

gradient, to the main production terms, 〈ωiωksik〉 and −〈sijsjkski〉.

Well known order of magnitude estimates (Tennekes & Lumley (1972)) show that at high

Reynolds numbers production of enstrophy, 1
2 〈ω2〉, is mainly associated with the term

〈ωiωksik〉, i.e. with the self-amplification of the field of vorticity/strain fluctuations. Ac-

cording to these estimates the contributions to the enstrophy production, associated with

the mean velocity gradient, 〈ukωi〉∂Ωi/∂xk, 〈ωiωk〉Sik, Ωk〈ωisik〉, i.e. due to presence of

mean vorticity, Ωi, and strain, Sij , are small compared to 〈ωiωksik〉. Similar estimates

remain valid for the production of the total mean squared strain, 1
2 〈s2〉 ≡ 1

2 〈sijsij〉.

Namely, its production is mainly due to the term −〈sijsjkski〉, whereas the contributions

to the strain production, associated with the mean velocity gradient, −〈uksij〉∂Sij/∂xk

and 〈sijsik〉Skj , are small compared to −〈sijsjkski〉. Our present experiments (see also

Kholmyansky et al. (2001a)) showed that this is really the case, see Table 3.

It is noteworthy that such ‘smallness’ of these RDT-like terms is observed in a turbulent

channel flow at a rather moderate Reynolds number too (Sandham & Tsinober (2000)).

Another related result is the smallness of terms, associated with forcing, in the equations

for vorticity and strain (Galanti & Tsinober (2000)).

3.2. Velocity

A broad −5/3 range was observed for the power spectra of the three velocity components

(Fig. 9a) at all heights with about four decades of magnitude at the lower height of

0.8 m and about six decades at the largest height of 10 m for the component u1. Similar
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Figure 9. a – Normalized power spectra of the three velocity components at various heights.

The spectra of u2 are shifted by -2 and of u3 — by -4. b – Example of compensated power

spectrum (component u1, height 1.2 m.)

observations were made for the temperature fluctuations. At the low end of the wave-

number scale, with the decrease of the height, the spectra of u2 deviate faster from the

−5/3 law than the ones of u1. The spectra of u3 deviate even faster.

It is noteworthy that the compensated spectra look not that ‘nice’ (Fig. 9b), so that

the inertial range is considerably shorter. Similar behavior is observed when looking at

r – dependence of structure functions†. All this seems to be related to a much broader

issue concerning the very existence of scaling in turbulent flows.

3.3. Velocity derivatives

As mentioned, one of the main objectives of our present research is the field of velocity

derivatives. In the following we show a number of key properties studied previously in

our field experiments and some new ones. Some basic results are shown in Table 2 above.

† With the exception of Kolmogorov’s −4/5 law, Kolmogorov (1941a), for the third-order

velocity structure function and the −4/3 Yaglom’s law for the corresponding mixed veloc-

ity–temperature structure function, Yaglom (1949).
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Figure 10. PDFs of ωiωjsij , − 4
3
sijsjkski and their surrogate, −17.5(∂u1/∂x1)

3 (a) and joint

PDF of ωiωjsij and − 4
3
sijsjkski (b).

3.3.1. Enstrophy and strain production

Production of enstrophy, ω2, and strain, s2, are among the basic processes in turbulent

flows. The PDFs of production of enstrophy, ωiωjsij , and strain, − 4
3sijsjkski, as well as

one of their surrogates, −17.5(∂u1/∂x1)3, are shown in Fig. 10a. Their positively skewed

nature is seen quite clearly. The coefficients are chosen equal to those appearing in the

relations for homogeneous (− 4
3 ) and isotropic (−17.5) flow. As observed previously, the

PDF of the surrogate −17.5(∂u1/∂x1)3 is considerably different. This is true also of other

surrogates, such as the most popular dissipation surrogate 15(∂u1/∂x1)2.

It is noteworthy that though the univariate PDFs of ωiωjsij and − 4
3sijsjkski look

similar, the point-wise relation between ωiωjsij and − 4
3sijsjkski is strongly nonlocal due

to the nonlocal relation between vorticity and strain. Consequently, locally they are very

different as can be seen from their joint PDF, Fig. 10b: they are only weakly correlated

and there are many points with small ωiωjsij and large − 4
3sijsjkski and vice versa. The

correlation coefficient between ωiωjsij and − 4
3sijsjkski is of the order of 0.25. Their

rates, i.e. ωiωjsij/ω2 and − 4
3sijsjkski/s2, are correlated even less.

Among the qualitative universal features of most (at least) turbulent flows there is
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Figure 11. Joint PDF of the second invariant, Q = 1
4
(ω2 − 2siksik), and the third invariant,

R = − 1
3
(sikskmsmi + 3

4
ωiωksik), of the velocity gradient tensor. Selected data (a) and full data

set (b).

a so-called ‘tear-drop’ feature observed in the invariant map of the second invariant,

Q = 1
4 (ω2 − 2siksik), versus the third invariant, R = − 1

3 (sikskmsmi + 3
4ωiωksik), of

the velocity gradient tensor, ∂ui/∂xk. This feature was observed in all our runs. Two

examples are shown in Fig. 11.

An important point is that the left figure (a) was plotted for the subset of points (about

6% of the whole set), selected by the criterion of relative velocity divergence smaller than

0.1, as done in another context by Lüthi et al. (2005). The R − Q plot belongs to the

kind of statistical properties which are strongly sensitive to errors. For the whole set

of data, see Fig. 11b, this plot resembles the one for a Gaussian velocity field, which is

symmetric with respect to the vertical axis (Chertkov et al. (1999)). The left “horn” in

this plot is more pronounced because of the larger level of noise. It is noteworthy that

statistics of all the quantities reported in the paper is not sensitive to the above selection

procedure, with the exception of the R−Q plot. We do not have a definite explanation

of this behavior neither we found (so far) other quantities with such sensitivity. One of

the possibilities is that quantities which are flux-like (i.e. they are of the form div{. . .}
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ωiωksik ωiωksik/ω2 −sijsjkski −sijsjkski/s2

ω2 0.36 0.13 0.14 0.10

s2 0.30 0.23 0.38 0.28

Table 4. An example of correlation coefficients between production terms versus enstrophy

and strain, height 3 m.

as R and Q are) exhibit such a property. This is a matter of further study which is now

under way.

Another kind of relations of interest is the one between the quantities responsible for

enstrophy and strain production and enstrophy and strain themselves. The corresponding

correlation coefficients are shown in Table 4.

The main feature is that strain production and its rate are much less correlated with

enstrophy than with strain, whereas enstrophy production is equally correlated with both,

but its rate is more correlated with strain. We remind that the particular interest in the

strain production is due to the fact that dissipation is directly related to strain rather

than enstrophy. It was, therefore, stressed (Tsinober (1998a,b); Tsinober et al. (1999);

Tsinober (2001) and references therein) that the cascade, whatever this means, is associ-

ated with strain production rather than with vortex stretching and enstrophy production.

Moreover, enstrophy production (and vortex stretching) is opposing the production of

strain/dissipation. This is closely related to the issue of reduction of nonlinearity, which

is the next aspect of our concern.

3.3.2. Reduction of nonlinearity

Reduction of nonlinearity is understood here as in Tsinober (1998a,b, 2001); Tsinober

et al. (1999). Namely, all the physically meaningful nonlinearities appear to be much
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Figure 12. Conditional averages of W 2/ω2 (a) and (Υω)2 (b) on ω2, s2.

smaller in the regions with concentrated vorticity (large enstrophy) than in the regions

dominated by strain. This is true of such quantities as ωiωjsij , ωiωjsij/ω2, sijsjkski,

sijsjkski/s2, W 2, (Wi ≡ ωjsij), W 2/ω2, sijsjksimsjm, sijsjksimsjm/s2 and (Υω)2 ≡

W 2/(ω2)− {ωiωjsij/(ω2)}2. All these quantities and others appear in the equations for

vorticity, ωi, enstrophy, ω2, total strain, s2 = sijsij , and higher-order quantities (e.g.,

Appendix 3 in Tsinober (2001)). The quantity (Υω)2 is a measure of the inviscid rate of

change of direction of the vorticity vector. The vector Υω
i = 1

ω ωksik− ωi

ω3 ωjωksjk appears

in the equation for the unit vector of vorticity, ω̃i = ωi/ω, i.e. it is responsible for tilting

of vorticity. We show two examples in Fig. 12, clearly demonstrating the phenomenon of

reduction of nonlinearity in the above sense.

Reduction of nonlinearity in the sense as discussed above is seen even better looking

at conditional means of separate eigen-contributions. Two examples, ωiωksik/ω2, and

W 2/ω2 are shown in Fig. 13.

3.3.3. Geometrical statistics

The issues described above are closely related to what is called geometrical statistics,

which exhibits important aspects of dynamics and structure of turbulent flows. This
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Figure 13. Conditional averages of eigen-contributions to ωiωksik/ω2 (top) and W 2/ω2

(bottom).

includes important geometrical relations (such as alignments mentioned below) of dy-

namical significance due to essentially three-dimensional nature of turbulent flows.

The first example is the most dynamically important alignment between vorticity, ω,

and the vortex stretching vector, W, Wi = ωjsij , since the cosine of the angle between

the two is the normalized enstrophy production, ωiωjsij/ (ω ·W ). The PDF of the cosine

of this angle, cos(ω,W), is positively skewed in full accordance with the predominance of

the vortex stretching over vortex compressing, see Fig. 14a. This asymmetry is preserved

at very low level of enstrophy and total strain, which is a clear indication that there

are no regions in the turbulent flow exhibiting Gaussian behavior and/or which are

‘structureless’.

The asymmetry in the PDF of cos(ω,W) is stronger in the regions dominated by

strain, s2 ≡ sijsij , than in the regions with large enstrophy, ω2. This difference is smaller
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Figure 14. PDF of the cosine between the vorticity vector, !, and the vortex stretching

vector, W (a) and between ! and the eigenvectors, �k, of the rate of strain tensor (b).

than in the DNS of Navier–Stokes equations at Reλ∼ 80 (Tsinober et al. (1997); Tsinober

(1998a); Tsinober et al. (1999)). The most probable reason is that in the field experiment

the velocity derivatives are somewhat under-resolved, especially in the regions with large

enstrophy and/or strain, so the errors are likely to contribute to the “blur” of the ori-

entations. The stronger asymmetry in the PDF of cos(ω,W) in the regions, dominated

by strain, than in the regions with large enstrophy corresponds to the above mentioned

reduction of nonlinearity in the regions with large enstrophy as compared to the regions

dominated by strain.

Now let us consider the vorticity vector, ω, in the frame of the eigenvectors, λk, of the

rate of strain tensor, sij , with the corresponding eigenvalues, Λk, ordered as Λ1 > Λ2 >

Λ3. Fig. 14b shows the PDFs of cos(ω, λk). They exhibit the same behavior as in the flows

at moderate Reynolds numbers Reλ∼ 102. The distributions are clearly symmetric, and

there is strong preferential alignment between ω and λ2, the eigenvector corresponding

to the intermediate eigenvalue, Λ2.

The enstrophy production can be expressed in the eigenframe as

ωiωksik = ω2Λ1 cos2(ω, λ1) + ω2Λ2 cos2(ω, λ2) + ω2Λ3 cos2(ω,λ3).

An important aspect is that the asymmetry of cos(ω,W) and the corresponding pro-
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Figure 15. PDF of the eigenvalues, Λk, of the rate of strain tensor, sij (a) and PDF of the

cosine between the vector Υω and the eigenvectors, �k, of the rate of strain tensor (b).

cess of predominant production of enstrophy is associated with two qualitatively different

regions of turbulent flow. The first one is where vorticity is aligned with λ1, the eigen-

vector corresponding to the largest eigenvalue, Λ1, of sij . The second region is where

vorticity tends to be aligned with λ2. We emphasize that the contribution to the en-

strophy production and other nonlinearities from the first region is about three times

larger than that from the second region, in spite of the general tendency for alignment

between vorticity and λ2 (see Fig. 14b). We point at least at two reasons for this. First,

the second eigenvalue, Λ2, though positively skewed, takes both positive and negative

values (Fig. 15a), whereas Λ1 assumes only positive values. Second, the magnitude of Λ1

is much larger than that of Λ2, see Table 5.

As mentioned, another aspect of geometrical statistics concerns the change of direction

of vorticity, which is naturally characterized by the rate of change of the unit vector along

the vorticity, ω̂ = ω/ω. There are two contributions to this rate: the inviscid and the

viscous. The latter is inaccessible in our experiments. The former is equal to the vector

Υω
i = 1

ω ωksik − ωi

ω3 ωjωksjk. The alignments, i.e. the PDFs of cos(Υω, λk) of this vector

with the eigenframe of the rate of strain tensor are shown in Fig. 15b.
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Value at the height, m α 0.8 1.2 2.0 3.0 4.5 7.0 10.0

1 1.44 1.60 1.36 1.31 1.53 1.04 1.37



ω2Λα cos2 (!, �α)

�
2 0.44 0.62 0.67 0.46 0.46 0.58 0.49

3 -0.87 -1.22 -1.03 -0.77 -0.99 -0.62 -0.85

1 0.53 0.33 0.29 0.52 0.46 0.49 0.49



ω2Λ2

α cos2 (!, �α)
�

2 0.09 0.05 0.15 0.14 0.13 0.16 0.15

3 0.38 0.63 0.56 0.34 0.41 0.35 0.36

1 1.77 1.56 1.63 1.91 2.08 1.55 2.19



Λα cos2 (!, �α)

�
2 0.47 0.50 0.52 0.45 0.47 0.54 0.47

3 -1.24 -1.07 -1.15 -1.36 -1.55 -1.09 -1.66

1 0.51 0.50 0.50 0.51 0.49 0.50 0.49



Λ2

α cos2 (!, �α)
�

2 0.08 0.09 0.10 0.10 0.10 0.11 0.10

3 0.41 0.41 0.41 0.40 0.41 0.40 0.41

1 0.53 0.52 0.51 0.49 0.47 0.51 0.47

〈Λα〉 /


s2
�1/2

2 0.09 0.10 0.09 0.07 0.06 0.09 0.06

3 -0.62 -0.61 -0.60 -0.56 -0.53 -0.60 -0.53

1 0.40 0.39 0.40 0.40 0.41 0.40 0.41



Λ2

α

�
/


s2
�

2 0.04 0.04 0.04 0.05 0.05 0.04 0.06

3 0.56 0.57 0.56 0.55 0.55 0.56 0.55

1 0.48 0.53 0.54 0.52 0.76 0.46 0.60



Λ3

α

�
/


s2
�3/2

2 0.01 0.02 0.02 0.02 0.01 0.02 0.02

3 -0.73 -0.82 -0.83 -0.86 -1.19 -0.80 -1.04

Table 5. Contribution of terms, associated with the eigenvalues, Λα, of sij , to the

mean enstrophy generation, 〈ωiωjsij〉 = 〈ω2Λi cos2(!, �i)〉, and vortex stretching,

〈W 2〉 = 〈ω2Λ2
i cos2(!, �i)〉, at various heights from the field experiment. There is no sum-

mation over the number of the eigenvector, α. The last three triads of rows show the means,

the mean squares and the mean cubes of the eigenvalues of the rate of strain tensor, Λα;

s2 = sijsij = Λ2
1 + Λ2

2 + Λ2
3; sijsjkski = Λ3

1 + Λ3
2 + Λ3

3.
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Figure 16. Conditional averages of velocity increments, 〈δun
i 〉 = (ui(x+r)−ui(x))n, conditioned

on the fluctuation of u1 (left) and on the magnitude of the vector of velocity fluctuations, u

(right).
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3.4. Non-locality

Our concern here is with the aspects which can be defined as direct coupling of large and

small scales (Kholmyansky & Tsinober (2000); Praskovsky et al. (1993)).

In Fig. 16 we show some results similar to the ones obtained by Praskovsky et al.

(1993) (at the left column) in parallel with those conditioned on the magnitude of the

vector of velocity fluctuations, u, where u2 = u2
1 +u2

2 +u2
3. A similar behavior is observed

for conditional statistics of 〈δun
i 〉 for all i = 1, 2, 3 and n = 2, 3, 4.

Two aspects deserve a special comment. First, there is a clear tendency of increase of

the conditional averages of the structure functions with the energy of fluctuations, as is

seen from the right column of the Fig. 16. Second, such a tendency, indicative of direct

coupling, is observed also for the smallest distance ∼ η, which was used for estimates

of the derivatives in the streamwise direction. This result is quite reliable due to the

absence of problems in estimating the derivatives in the streamwise direction (contrary

to the other two directions).

In Fig. 17 we show also similar conditional statistics for the enstrophy, ω2, and the

total strain, sijsij . The result is quite similar to the one shown in Fig. 16 for the smallest

distance ∼ η and to that of Kholmyansky & Tsinober (2000).

4. Concluding remarks

Concluding we would first like to mention that the results obtained in this research

are in full conformity with those obtained in a similar field experiment. Being the first

repetition of an experiment of this kind (in which explicit information is obtained on the

field of velocity derivatives) it allows to gain confidence in both experiments. The results

reported here confirm the main conclusions made before. Namely, these results are quite

similar to those obtained in experiments in laboratory turbulent grid flow and in DNS
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Figure 17. Conditional averages of enstrophy, ω2, and total strain, sijsij , on magnitude of

velocity fluctuations vector, u. The fit is in the spirit of Kolmogorov refined similarity hypothesis,

though it is a fit in the first place. This fit cannot be expected to be universal quantitatively and

should at least have different coefficients a and b for flows with different large-scale properties

in the spirit of the Landau remark.

of Navier–Stokes equations in a cubic domain with periodic boundary conditions, both

at Reλ∼ 102. An important aspect is that this similarity is not only qualitative, but to

a large extent quantitative. The main difference between the two is in the ‘length’ of

the inertial range. This means that the basic physics of turbulent flow at high Reynolds

number Reλ∼ 104, at least qualitatively, is the same as at moderate Reynolds numbers,

Reλ∼ 102. This is true of such basic processes as enstrophy and strain production, geo-

metrical statistics, the role of concentrated vorticity and strain, reduction of nonlinearity

and some nonlocal effects.

The next point is that the present experiments went far beyond the previous ones in

two main respects. The first one is that all the data were obtained without invoking the

Taylor hypothesis and therefore a variety of results on fluid particle accelerations became

possible. The second is simultaneous measurements of temperature and its gradients with
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the emphasis on joint statistics of temperature and velocity derivatives. Both are reported

in parts II and III following this one.
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