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We report first results of an experiment, in which explicit information on all velocity

derivatives (the nine spatial derivatives, ∂ui/∂xj , and the three temporal derivatives,

∂ui/∂t) along with the three components of velocity fluctuations at a Reynolds num-

ber as high as Reλ∼ 104 is obtained. No use of the Taylor hypothesis was made, and

this allowed to obtain a variety of results concerning acceleration and its different Eule-

rian components along with vorticity, strain and other small-scale quantities. The field

experiments were performed at five heights between 0.8 and 10 m above the ground.

The report consists of three parts. The first part, Gulitski et al. (2006a), is devoted to

the description of facilities, methods and some general results. The present second part

concerns accelerations and related matters. Finally the third part of our work, Gulitski

et al. (2006b), is devoted to the issues concerning temperature with the emphasis on joint

statistics of temperature and velocity derivatives.
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1. Introductory notes

As the material derivative of the velocity vector, the fluid particle acceleration field

in turbulent flow is among the most natural physical parameters of special interest in

turbulence research for a variety of reasons. Problems in which fluid particle accelera-

tion plays a key role are ranging from studies of basic issues as fine-scale intermittency,

production of Reynolds stresses, the so-called random Taylor hypothesis and two-phase

turbulent flows to applications in turbulent mixing and transport, cloud physics and in-

fluence of turbulence on the behavior of insects. In particular, Lagrangian acceleration

statistics are at the core of the kinematic theory and modelling of turbulent dispersion,

mixing, particulate transport and combustion. Finally, the acceleration gradient tensor is

known to govern the topology of quasi-geostrophic stirring (particle dispersion and tracer

gradient evolution) and transport properties in nearly two-dimensional and geostrophic

turbulence (Bernard et al. (1993); Borgas & Sawford (1991); Hua & Klein (1998); La

Porta et al. (2001); Pope (2002); Shaw (2003); Tsinober et al. (2001); Yeung & Pope

(1989)).

Hence, it is not surprising that there is a huge interest in a variety of issues associated

with fluid particle accelerations in turbulent flows (Aringazin & Mazhitov (2004); Biferale

et al. (2004); Chen et al. (2006); Christensen & Adrian (2001, 2002a,b); Crawford et al.

(2005); Hill (2002); Gylfason et al. (2004); Hill & Thoroddsen (1997); Hill & Wilczak

(1995); Kholmyansky et al. (2001a); La Porta et al. (2001); Lee et al. (2004); Lüthi

et al. (2001); Mann et al. (1999); Mordant et al. (2003, 2004a,b,c); Ott & Mann (2000);

Pinsky et al. (2000); Reynolds et al. (2005); Sawford et al. (2003); Shaw & Oncley (2001);
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Tsinober et al. (2001); Vedula & Yeung (1999); Voth et al. (1998, 2002); Yeung (1997);

Yeung & Borgas (2004) and references therein).

The study of basic properties of Lagrangian accelerations was started using direct nu-

merical simulations by Yeung & Pope (1989) and continued by Yeung (1997); Vedula &

Yeung (1999) and Tsinober et al. (2001). Due to extreme difficulties, the direct measure-

ment of the acceleration of a fluid particle has only recently been achieved in laboratory

flows by three-dimensional particle tracking (3DPT), see Crawford et al. (2005); La Porta

et al. (2001); Lüthi et al. (2001); Mann et al. (1999); Mordant et al. (2003, 2004b); Ott &

Mann (2000); Reynolds et al. (2005); Sawford et al. (2003), with especially high-precision

experiments performed by the group of E. Bodenschatz. These experiments were made in

a water flow configuration known as “French washing machine” in which the flow is pro-

duced by two counter-rotating discs (as in the classical von Karman flow) and is believed

to be highly anisotropic. Among the interesting findings in the direct determination of

particle acceleration (both via DNS and 3DPT) is the persistence of the magnitude of

accelerations along the fluid particle trajectory as contrasted with variability of its direc-

tion. The former has a correlation time of the order of integral Lagrangian time, whereas

the latter has a correlation time of the Kolmogorov time only (see Fig. 1).

In the Eulerian setting a successful attempt to measure accelerations was made in a

turbulent channel flow by particle-image accelerometry (Christensen & Adrian (2001,

2002a,b)) which is an extension of the particle image velocimetry at moderate Reynolds

number using air as a working fluid.

Until recently it was believed that it is impossible to employ hot-wire anemometry for

measurements of accelerations:
Even in multipoint probe measurements of velocity gradients (e.g., Vukoslavcevic,

Wallace, and Balint (1991); Tsinober, Kit, and Dracos (1992)), Taylor’s hypothesis
is invoked to estimate derivatives along the mean streamwise direction. Dahm &
Southerland (1997).

In order to determine a from Eulerian measurements, it would be necessary to
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Figure 1. Autocorrelation functions of the acceleration, a, and its components. a — from Yeung

(1997) with time scaled by the Lagrangian velocity integral time scale at Reλ= 140. b — from

Mordant et al. (2004b) with time scaled by the Kolmogorov time τη =
√

ν/ε, the line without

symbols is for the acceleration magnitude, inset: semilogarithmic plot.

know ∂u/∂t as well as u and ∇u at a point in space (which is possible in DNS
but not in experiments). Voth et al. (2002)

The only results achievable so far relate to indirect evaluation of acceleration vari-

ance,
〈
a2

〉
, using the methods developed by Hill and Wilczak assuming local isotropy

(Hill & Thoroddsen (1997); Hill & Wilczak (1995)) and used recently by Gylfason et al.

(2004). A summarizing figure from this latter paper (Fig. 2) shows various results on

the acceleration variance normalized by Kolmogorov scaling, a0 = 1
3 〈akak〉 ε−3/2ν1/2.

Also shown are additional results from recent particle tracking data, recorded with the

3D-PTV system of Risø National Laboratory (Ott & Mann (2000); Mann et al. (2005);

Jørgensen et al. (2005)) and processed using the method of Lüthi et al. (2005) and from

some of our recent field experiments to be described below. Though all the results are of

the same order, the scatter is not small.

However, it appears that it is possible to measure instantaneous accelerations in

an Eulerian setting using hot-wire anemometry. We made such a successful attempt

(Kholmyansky et al. (2001b); Galanti et al. (2003)) through an extension of multi-hot-
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Figure 2. Normalized acceleration variance, a0 = (1/3) 〈akak〉 ε−3/2ν1/2, vs Reλ from

Gylfason et al. (2004). Points are added from the present experimental data and from

the PTV experiments, Lüthi et al. (2005). The line is the fit from Yeung et al. (2006):

a0 = 1.3
R0.22

λ
+ 0.88R0.06

λ ln(Rλ
20

).

wire technique developed by the group of Professor A. Tsinober (Busen et al. (2001);

Galanti et al. (2003, 2004); Kholmyansky & Tsinober (2000); Kholmyansky et al. (2000,

2001b,a); Tsinober et al. (1992, 1997)). The new version of this technique allowed to esti-

mate the spatial derivatives of all three velocity components in the streamwise direction

independently of the time derivative, i.e. without invoking the Taylor hypothesis.

This was achieved by constructing a five-array probe (see Fig. 3a) with the central

array shifted out in the streamwise direction: the so-called NTH-probe (‘non-Taylor hy-

pothesis’). We show in Fig. 3b one of the earlier results obtained with such a probe in an

atmospheric surface layer (Kholmyansky et al. (2001a)). It is related to the random Tay-

lor hypothesis (Tennekes (1975)) and demonstrates strong anti-alignment between the

Eulerian components, al = ∂u
∂t (local) and ac = uk

∂u
∂xk

= (u · ∇)u (convective), of the

fluid particle acceleration, a = al +ac . This effect was also observed in DNS at relatively

low Reynolds numbers (Tsinober et al. (2001)). The strong anti-alignment of al and ac is
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Figure 3. a – Tip of the NTH-probe; b – PDF of the cosine between the local, al , and convective,

ac, acceleration components. On the inset — joint PDF of the true longitudinal derivative,

∂u1/∂x1, and its estimate using Taylor hypothesis, (−1/U)∂u1/∂t.

a manifestation of their strong mutual cancellation, so that a appears to be much smaller

than both al and ac , which represents the main difficulty in reliable determination, e.g.

of the variance of a. Thus we have shown already in 2001 (Kholmyansky et al. (2001a),

also Galanti et al. (2003)) that it is possible to use hot-wire techniques for studying the

field of fluid particle acceleration in an Eulerian setting.†

We would like to recall why we are using an ‘old-fashioned technique’ like hot-wire

anemometry. The main reason is the possibility of measuring all three components of the

velocity fluctuations vector, ui, and all nine components of the spatial velocity gradients

tensor, ∂ui

∂xj
, and its time derivatives, ∂ui

∂t . So far, all ‘modern’ techniques such as PIV,

PTV, holography and others are unable to cope with this problem neither in resolution

† The reason that the slope in Fig. 3b is not along the bisector is a combination of errors in

estimation of dx1 (geometry and effective “center of mass”) and mean velocity (calibration errors;

it is well known that the mean velocity is difficult to obtain from the hot-wire measurements).

At the present level of precision we relate the thickness of the ellipse to the calibration errors

and do not draw conclusions about the Taylor hypothesis.
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nor in the essence, i.e. obtaining the full set — total 15 — of velocity derivatives both in

space and time at Reynolds numbers ∼ 104.

1.1. Main goals and tasks

The preliminary results mentioned above comprise the basis for setting the main theme

and objectives of the present research.

For convenience we, first, recall here some of the notations.

The acceleration is a = al + ac , where ac = (u · ∇)u — is the convective acceleration

and al = ∂u/∂t — is the local acceleration in the frame attached to the ground, aL =

ω × u — is the Lamb vector, aB = 1
2∇u2 — is the Bernoulli component of acceleration,

aq = (a·û)û — is the acceleration component parallel to the velocity vector, where

û= u/u — is the unit vector along velocity vector, and a⊥ = a− aq — is the acceleration

component normal to the velocity vector.

In addition we consider a′c = {(u−U) ·∇}u and a′l = ∂u
∂t +(U · ∇)u — the convective

and local components of acceleration in a frame moving with mean velocity, U, which

are different from al and ac , i.e. while the particle acceleration is a Galilean invariant

quantity, it’s Eulerian components are not. In a frame moving with constant (mean)

velocity, U, the velocity time derivative (i.e. local acceleration, al , in a moving frame

which we denote as a′l) is

lim
τ→0

u(x + Uτ, t + τ)− u (x, t)
τ

=
∂u
∂t

+ (U · ∇)u.

The space derivative, e.g. ∂
∂x1

, is

lim
ξ→0

u(x + ξi)− u(x)
ξ

=
∂u
∂x1

,

but the instantaneous velocity is u−U. Therefore, the convective derivative (i.e. the con-

vective acceleration, ac , which we denote as a′c) becomes {(u−U) · ∇}u. In other words
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the Eulerian components of acceleration are frame dependent, but the total Lagrangian

acceleration — as a true physical quantity — is, of course, frame independent.

However, our measurements are in a particular Eulerian frame, i.e. attached to the

ground. The consequence is that the Lagrangian acceleration, a, is a sum of two large

quantities, al and ac , due to the contribution of the mean velocity, U. Since there is a

strong cancellation between al and ac (and consequently a is much smaller than both al

and ac) there is a strong “amplification” of error when evaluating a. The same observation

is true when looking at a′l and a′c (which are much smaller than al and ac due to removal

of the contribution from the mean velocity, U): both are much more contaminated by

noise (in the sense of relative error) than al and ac . The problem of the errors that

become especially apparent when we deal with a small quantity, obtained as a difference

of large ones, was discussed in part I of our paper (Gulitski et al. (2006a)). It is not

easy (if possible) to estimate their impact directly. When results from DNS or other

experiments exist, comparison with them can give an indication of that impact.

The main goal is to study the field of Lagrangian accelerations, a ≡ Du
Dt , and its Eule-

rian components: the local acceleration, al = ∂u
∂t , and the convective one, ac = (u · ∇)u,

as it was done for low Reynolds numbers in DNS (Tsinober et al. (2001)). This in-

cludes the random Taylor (sweeping decorrelation) hypothesis and associated issues of

geometrical statistics of accelerations, involving the above mentioned variety of Eulerian

components of the total acceleration. In particular, we are interested in mutual (sta-

tistical) cancellation between the local acceleration, al = ∂u
∂t , and the convective one,

ac = (u · ∇)u. Since these quantities are vectors, the degree of this mutual cancella-

tion should be studied both in terms of their magnitude and the geometry of vector

alignments. Among other things this cancellation should be reflected in that the total

acceleration, a = al + ac , is much smaller than its local and convective components, al
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and ac , in large negative correlation between al and ac , and in strong (anti-)alignment

of al and ac .

A natural by-product will be the direct check of the Taylor hypothesis using the new

technique mentioned above. We would like to stress that only a technique allowing to

measure simultaneously and independently the spatial and temporal velocity derivatives

enables one to address all these issues. It is essential to note that in principle neither the

random Taylor hypothesis nor the conventional one can be strictly valid.

Other aspects include one- and two-point statistics, conditional statistics of accelera-

tions and its Eulerian components and Reynolds number effects.

2. Acceleration variance.

2.1. General notes.

The acceleration variance, 〈akak〉, is a key quantity in a number of issues. Following the

above cited papers, we use the Kolmogorov normalized version of acceleration variance,

a0 = (1/3) 〈akak〉 ε−3/2ν1/2 (Yaglom (1949); Obukhov & Yaglom (1951); Monin & Ya-

glom (1975)). Its value and scaling with the Reynolds number are essential for stochastic

Lagrangian models and for Lagrangian probability density function models of turbulent

diffusion if these models are to incorporate finite Reynolds number effects.

As mentioned, at the present state of the art, the acceleration variance, 〈akak〉, and

consequently a0 are not directly obtainable from Eulerian measurements due to extremely

strong cancellation between al and ac . As found by Tsinober et al. (2001) from DNS

simulations, the magnitude of the correlation coefficient between al and ac is increasing

with Reλ and is already about −0.97 at Reλ= 240. Therefore, one can expect that this

correlation coefficient will be extremely close to minus unity at larger Reλ. Consequently

al + ac will become very much smaller than both al and ac . Already at Reλ= 240 the
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RMS of a is less than 0.1 of both al and ac . Hence a, obtained as a sum of al and ac at

large Reλ, is “drowning” in noise. It is noteworthy that PTV experiments at low Reλ

(Lüthi et al. (2005)) exhibit the same problem. Namely, the RMS of the fluid particle

acceleration obtained as a sum of al and ac is two times larger than that obtained directly.

Hill & Wilczak (1995) found a relation determining the acceleration variance via the

fourth-order structure functions of the velocity field

〈akak〉 = χ− 35
2

ν
〈
(∂u1/∂x1)3

〉
, (2.1)

with

χ = 4
∫ ∞

0

r−3[S(4)
u1

(r) + S(4)
u2

(r)− 6S(4)
u1u2

(r)]dr, (2.2)

S(4)
u1

(r) =
〈
(∆u1)4

〉
; S(4)

u2
(r) =

〈
(∆u2)4

〉
; S(4)

u1u2
(r) =

〈
(∆u1)2(∆u2)2

〉
;

∆ui = ui(x + r)− ui(x).

This expression was obtained with the only assumption of local isotropy, so that ∆u3

can be used in (2.2) instead of ∆u2. Hill & Wilczak (1995) argued also that a sufficiently

precise result can be obtained from

χ = 4Hχ

∫ ∞

0

r−3S(4)
u1

(r)dr, (2.3)

with Hχ = const for sufficiently large Reynolds numbers. Vedula & Yeung (1999) de-

termined Hχ from DNS and showed that it approaches a constant value of approximately

0.65 for Reλ greater than about 200. Also note that assuming isotropy we obtain

−35
2

ν
〈
(∂u1/∂x1)3

〉
= ν 〈ωiωjsij〉 .
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This method was implemented in previous attempts to determine acceleration variance

using hot-wire anemometry by Hill & Thoroddsen (1997) and Gylfason et al. (2004).

Our Fig. 2 shows a number of points obtained from our data by the above method.

The main feature is that there seems to be no saturation in the Re-dependence of a0.

There are two possibilities. First, this may be a genuine effect. In that case the scaling

proposed by Yaglom (1949) is not “perfect” and the acceleration variance is larger than

that proposed by Yaglom. Second, the trend seen in Fig. 2 is due to the imperfections of

the indirect method. The issue seems to be open and requires further much more precise

measurements.

3. One-point statistics

3.1. PDFs

We proceed with showing in Figs. 4, 5, and 6 the PDFs related to accelerations. All the

PDFs exhibit strong deviation from Gaussian distributions. It is noteworthy that this

deviation cannot be considered as a pure manifestation of intermittency for the following

reason. Acceleration is a non-linear function of velocity and its derivatives. Therefore,

even for a purely Gaussian velocity field one cannot expect the PDFs, associated with

accelerations, (as any nonlinear functions/functionals of velocity field) to be Gaussian

(Tsinober (2001)). Indeed, it was shown by Tsinober et al. (2001), using the data from

DNS, that this is really the case: the PDFs of accelerations of a Gaussian velocity field are

strongly non-Gaussian, but somewhat less than those for a real velocity field, resulting

from the Navier–Stokes equations.

The PDF of the centered acceleration modulus a− 〈a〉 (Fig. 6a) deserve special men-

tioning. It is strongly positively skewed. This behavior is closely related to the two-point

statistics of acceleration moduli.
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Figure 4. PDFs of the ai; ac,i, al,i, i = 1, 2, 3.

Figure 5. PDFs of the a′c,i, a′l,i, i = 1, 2, 3.

Figure 6. a – PDF of a − 〈a〉 (solid line). For comparison shown also PDF for log-normal

distribution with variance 1, shifted to the left by 〈a〉 /σa (dotted line). b – PDF of a2 = akak.

3.2. Geometrical statistics

By the term geometrical statistics we denote alignments between a variety of vectors. In

case of accelerations and its different components this is quite rich and instructive.
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Variance a al ac a′l a′c

9900 39900 60100 9100 2600

Table 1. Variances in m s−2 of a, al , ac , a′l , a′c .

3.2.1. Random Taylor Hypothesis

These issues take their origin from Taylor (1935) and are known as the Taylor hy-

pothesis. Here we demonstrate one of the basic alignments associated with the random

Taylor hypothesis (or the sweeping decorrelation hypothesis) which concerns the rela-

tions between the instantaneous Lagrangian acceleration and its (Eulerian) ‘components’

al = ∂u/∂t and ac = (u · ∇)u. It was suggested by Tennekes (1975) that

in turbulence with high Reynolds numbers... the dissipative eddies flow past an
Eulerian observer in a time much shorter than the time scale which characterizes
their own dynamics. This suggests that Taylor’s ‘frozen-turbulence’ approximation
should be valid for the analysis of the consequences of large-scale advection of the
turbulent microstructure.

The outcome is that i) there should be a strong cancellation effect between al and ac , so

that a = al + ac is much smaller than both al and ac (e.g. comparing their variances),

and ii) al and ac should be strongly anti-aligned. Both effects were convincingly demon-

strated by Tsinober et al. (2001) with DNS data for relatively small Reλ5 400 and with

preliminary experiments, Kholmyansky et al. (2001a). In our experiments we observed

these effects at Reλ∼ 104.

The results are shown in Table 1 with variances of a, al , ac , a′l , a′c and in Fig. 7 with

an example of the PDFs of cos(al ,ac), cos(a′l ,a
′
c). Both clearly exhibit the two aspects

just mentioned above. It is noteworthy that the anti-alignment is observed also for the

acceleration components associated with the frame moving with the mean velocity, i.e.
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Figure 7. PDFs of cos(al ,ac) in the frame attached to the ground (a) and in the frame moving

with the mean velocity (b) from field experiment; PDF of cos(al ,ac) from PTV experiment (c).

cos(a′l , a′c), though in a much weaker form, most probably due to the large relative error

in these quantities.

Another view on the above is shown in Fig. 8 with the joint PDFs of Cartesian com-

ponents of local and convective accelerations (only those for x1-component as the x2 and

x3 components exhibit very similar behavior) for both acceleration components in the

frame attached to the ground and the frame moving with the mean velocity, where the

correlation coefficients between al , ac and a′l , a′c are shown in the upper right corner of

each figure. It is seen that the correlation between acceleration components in the frame,

attached to the ground, is pretty high, whereas the correlation in the frame, moving with

the mean velocity, is rather weak due to large relative error for these quantities.

Our main focus here is on the original random Taylor hypothesis concerning the local

and convective accelerations. However, it appears that the random Taylor hypothesis is

valid not only for the velocity field, but for a variety of other quantities such as velocity

derivatives (vorticity and strain), temperature and its gradient, and solenoidal passive

vectors. In other words, the random Taylor hypothesis has a universal nature, which is

manifested in a strong tendency for cancellation between the local temporal derivative,

∂Q/∂t, and the advective derivative, uk∂Q/∂xk, of whatever quantity, Q. Thus the full
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Figure 8. Joint PDFs of x1-components of al and ac in the frame attached to the ground (a)

and in the frame moving with the mean velocity (b) from field experiment; joint PDF from PTV

experiment (c).

material (Lagrangian) derivative, DQ/Dt = ∂Q/∂t+uk∂Q/∂xk, is much smaller (at least

an order of magnitude) than its Eulerian components. Evidence regarding this issue is

given by Galanti et al. (2003).

3.2.2. Alignments with the eigenframe, λk, of the rate of strain tensor, sij.

The alignments are shown in Figs. 9–12. The first important feature of all the align-

ments with the eigenframe, λk, of the rate of strain tensor, sij , is that they all are similar

for the quantities, associated with the frame attached to the ground, and for the ones in

the frame moving with the mean velocity; in several cases they are very similar. This is a

clear indication that the quantities, associated with the frame moving with the mean ve-

locity, are captured correctly in spite of much larger error in their estimates as explained

above.

Apart from the above important technical aspect we provide comments on the nature

of the alignments shown as follows.

One of the common features is that all the vectors tend to be normal to the intermediate

eigenvector, λ2, of the rate of strain tensor and tend to be aligned with both the pure

stretching eigenvector, λ1, and the pure compression eigenvector, λ3. This is consistent

with the intuition, based on the fact that vorticity is strongly aligned with λ2 and the
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Figure 9. PDFs of the cosine of the angle between the acceleration components, a, al , ac , and

the eigenframe, λk, of the rate of strain tensor, sij , obtained at Reλ∼ 104 in our field experiment

(left) and at Reλ∼ 102 in PTV experiment (right) by Lüthi et al. (2005).

expectation that fluid particle acceleration is mostly normal to vorticity and consequently

aligned with the pure stretching and compressing eigen-directions of the rate of strain

tensor. This indeed is observed, as seen from Fig. 13.

It is noteworthy that the alignments, obtained from hot-wire measurements, are similar
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Figure 10. Alignments of the acceleration components, aB , aL, a⊥, with the eigenframe, λk,

of the rate of strain tensor, sij , associated with frame attached to the ground.

Figure 11. Same as in Fig. 10, associated with frame moving with the mean velocity.

Figure 12. Alignments of the acceleration component, aq, with the eigenframe, λk, of the rate

of strain tensor, sij , associated with frame attached to the ground (a) and frame moving with

the mean velocity (b).

to those observed in low Reynolds experiments using three-dimensional particle tracking

velocimetry by Lüthi et al. (2005). Examples of such alignments are shown in Fig. 9.
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Figure 13. PDFs of the cosine of the angle between acceleration, a, and vorticity, ω, in the

frame attached to the ground (a) and in the frame moving with the mean velocity (b) from field

experiment; similar PDF from PTV experiment (c).

3.2.3. Additional significant alignments

As mentioned, there are various physically meaningful Eulerian components of accel-

eration: a = al +ac = al +aL +aB = aq + a⊥, where ac = (u · ∇)u — is the convective

acceleration and al = ∂u/∂t — is the local acceleration in the frame attached to the

ground, aL = ω × u — is the Lamb vector, aB = 1
2∇u2 — is the Bernoulli component

of acceleration, aq = (a · û)û — is the acceleration component parallel to the velocity

vector, where û = u/u — is the unit vector along the velocity vector, and a⊥ = a− aq

— is the acceleration component normal to the velocity vector; similar quantities are

defined in the frame moving with the mean velocity. The availability of these quantities

allows to address a rich variety of alignments.

First, here again, we point to the similarity between the alignments involving quantities

associated with the frame attached to the ground and quantities in the frame moving

with the mean velocity. We show those pairs of figures in which strong alignments are

observed.

Second, it is of special interest that the alignments shown above are similar also to

those observed in low Reynolds number experiments using three-dimensional particle
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Figure 14. Same as in Fig. 13 for cos(a, aL).

Figure 15. Same as in Fig. 13 for cos(a, a⊥).

Figure 16. PDFs of cos(aL,al) in the frame attached to the ground (a) and in the frame

moving with the mean velocity (b), field experiment; similar PDF from PTV experiment (c).

tracking velocimetry in experiments by Lüthi et al. (2005). Examples of such alignments

are shown in Figs. 14–20.

4. Two-point statistics

The auto-correlations of vectors a, ac , al , a′c and a′l (such as 〈axi
(x + r) · axi

(x)〉)

and their Cartesian components (such as 〈ax1(x + r) · ax1(x)〉) and the modulus of a

are shown in Figs. 21, 22 along with mean values of the cosine of the angle between
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Figure 17. Same as in Fig. 16 for cos(aL, aB).

Figure 18. Same as in Fig. 16 for cos(a⊥, ac).

Figure 19. PDFs of cos(a⊥, aL) in the frame attached to the ground (a) and in the frame

moving with the mean velocity (b), field experiment; similar PDF from PTV experiment (c).

Figure 20. PDFs of the cosine of the angle between the acceleration, a, and velocity, u, in the

frame attached to the ground (a) and in the frame moving with the mean velocity (b) from field

experiment; similar PDF from PTV experiment, (c).
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Figure 21. The auto-correlations of vectors a (a), ac (b), al (c) and their Cartesian

components from field experiment.

Figure 22. The auto-correlations of vectors a′c (a), a′l (b) from field experiment. The

auto-correlations of vectors a (c) from PTV experiment.

Figure 23. Mean values of the cosine of the angle between corresponding vectors at two

positions, 〈cos{a(x + r), a(x)}〉 from field experiment, (a) and from PTV experiment (b).

corresponding vectors at two positions 〈cos{a(x + r), a(x)}〉, Fig. 23. Here the values of

the distance, r, between the two points with sequential numbers i and i+n is calculated

as r = n ·∆t 〈u1〉, where ∆t = 10−4 s – is the sampling time.

The main features are similar to those obtained for Lagrangian correlations both in

DNS (Yeung (1997)) and experimentally (Mordant et al. (2004a)). The first is that all the
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vectors and their components are correlated over much shorter distances — typically 10

Kolmogorov lengths — than their moduli. The latter are correlated over large distances

of order 104 Kolmogorov lengths, which is comparable with the integral scale just like for

Lagrangian correlations both in DNS (Yeung (1997)) and experiments (Mordant et al.

(2004a)). This behavior is observed also in PTV experiments by Lüthi et al. (2005) as

seen from Fig. 22 (c).

A similar feature is found for the cosines of the corresponding angles, Fig. 23, though

the difference is much smaller. An interesting aspect is that the above feature is the same

both for acceleration components in the frame attached to the ground and in the frame

moving with the mean velocity (Fig. 22a,b).

The behavior of second-order structure functions of Cartesian components of a, ac , al ,

a′c and a′l is consistent with the results on correlations shown above.

5. Conditional statistics, non-locality

Fluid particle accelerations are considered as small-scale quantities. The long-range

correlations of the modula of accelerations reported above and those by previous authors

can be considered as a kind of manifestation of non-locality. This issue is addressed in

the present section.

We have seen in the first paper of this series Gulitski et al. (2006a), that the statistics

of derivatives (i.e. small-scale quantities) is not independent of large-scale quantities, as

is usually assumed in a variety of theoretical approaches. Similar results were obtained

by Sawford et al. (2003); Mordant et al. (2004a); Crawford et al. (2005) for Lagrangian

statistics of accelerations. Our results exhibit the same feature. Namely, the conditional

statistics of accelerations is strongly dependent on velocity, Fig. 24. This can be consid-

ered as an additional clear indication of direct coupling between large and small scales
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Figure 24. Conditional averages of a (a) and a2 (b) on the magnitude of the vector of velocity

fluctuations, u, and of a2
i on uj , where i, j = 1, 2, 3 (c). The fits are as implied by simple

arguments of Aringazin & Mazhitov (2004) and used later by Crawford et al. (2005). Note that

in Crawford et al. (2005) e ∼ 2 and d ∼ 10−2 and is Reynolds dependent.

and non-locality of turbulent flows. This means that it would be too optimistic to ex-

pect quantitative universality of the acceleration statistics, e.g. such as those shown in

Fig. 24a,b among others. Hence the fits shown in these figures (implied by simple argu-

ments of Aringazin & Mazhitov (2004) and used later by Crawford et al. (2005)) cannot

be considered much more than just fits. Nevertheless, they reflect the qualitative trends

correctly and are the same in Crawford et al. (2005) and in Fig. 24a,b. However, they

are very different quantitatively, as should be expected, since the large scale properties

(and Reynolds numbers) of the flow studied by Crawford et al. (2005) (French washing

machine) are qualitatively and essentially different from those in the atmospheric surface

layer addressed in this study. Therefore, it does not make much sense (if at all) to look

for quantitative comparison between the two.

Before concluding we would like to remind that our observations are made in Euler

frames. Nevertheless, we observed the same tendency of acceleration moduli to be cor-

related over large distances order of 104 Kolmogorov lengths, which is comparable with

the integral scale, just as for Lagrangian correlations.
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6. Conclusions and possible future directions

From the technical point the main achievement is the possibility to employ the multi-

hot-wire technique without invoking the Taylor hypothesis and thereby to access the fluid

particle acceleration and a variety of its Eulerian components. This required the design

and manufacturing of a special probe and introduction of modifications in the existing

system.

The new technique allowed to obtain a number of results not accessible until now.

Our results prove the feasibility of correct measurements of the streamwise derivatives

without invoking the Taylor hypothesis, thus allowing to address many important issues

associated with accelerations and related matters. These concern a number of properties

of fluid particle accelerations and its Eulerian components such as variances, geometrical

statistics of accelerations, random Taylor (sweeping decorrelation) hypothesis, condi-

tional statistics and non-locality. In particular it was shown that the random Taylor

hypothesis is valid both in the system of coordinates attached to the ground and in the

system moving with the mean velocity. In the latter case the results can be regarded as

qualitative only, due to large relative error. The strong cancellation effects between the

local and convective accelerations do not allow to obtain reliably, e.g. the variance of the

Lagrangian acceleration, thus posing a challenge for drastic improvement of the quality

of measurements and requiring non-trivial investment.

The obtained results conform with and confirm one of the main conclusions of Kholmyan-

sky & Tsinober (2000); Kholmyansky et al. (2001b,a) that the basic physics of turbulent

flow at high Reynolds number Reλ∼ 104, at least qualitatively, is the same as at moderate

Reynolds numbers, Reλ∼ 102. This appears to be true not only for such basic processes

as enstrophy and strain production, geometrical statistics, the role of concentrated vor-
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ticity and strain, reduction of nonlinearity and non-locality, but also with respect to a

variety of issues concerning accelerations and their Eulerian components.

It is important to emphasize, that our claim that

the basic physics of turbulent flow at high Reynolds number Reλ∼ 104, at least
qualitatively, is the same as at moderate Reynolds numbers, Reλ∼ 102

does not mean that what is called “Reynolds number dependence” is unimportant. An

immediate example comes from the indirect evaluation of the acceleration variance. It

gives clear indications that — if scaled as proposed by Yaglom (1949) — it exhibits a

clear Re-dependence and does not saturate at least up to Reλ∼ 104. Another well-known

example is the behavior of flatness of individual velocity derivatives and similar quantities

based on vorticity and/or strain.

Reynolds dependence is of extreme importance in a great variety of purely engineering

problems and other applications. It is important in basic issues of asymptotic behavior

and limiting state(s) of turbulent flows as Re → ∞. It remains to classify and distin-

guish between Reynolds-dependent and Reynolds-independent quantities/phenomena in

turbulence. At this stage we hold the opinion, that at a qualitative level the basic physics

of turbulence is Reynolds number independent.

One of the main challenges for future efforts in technical aspects is the reduction

of the relative error for the acceleration components in the system moving with the

mean velocity. This requires substantial improvement of the system such as i) further

miniaturization of the probe design both with respect to its individual arrays as well

as the whole probe in order to minimize the influence of velocity gradients across the

individual arrays and the whole probe, and ii) further improvement of the calibration

system. It is possible to build a probe of the overall scale only a bit larger than 1 mm. It

can be done with the available technology on the basis of arrays as shown in Fig. 25.
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Figure 25. An array (0.35 mm at the tip) built with a Pt-10% Rho wire, 1.25 mkm in

diameter. On the left — a human hair (< 70 mkm in diameter) is shown.
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P.-Å. Krogstad), Advances in Turbulence, vol. X, pp. 267–270. CIMNE.

Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish,
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