Problems in highly turbulent
flow:

. Rayleigh-Benard
Taylor-Couette
. Boundary layers

. 2-phase flow

g A W N P

. Turbulence with phase transitions



. RB

* Oregon vs Grenoble controversy: origin?

 Ultimate RB convection: Kraichnan regime?

» Better understanding of aspect ratio dependence

e Understanding of non-Oberbeck-Boussinesq effects
e Understanding of the large scale wind dynamics

e BLS!

 RB with rotation



1. Taylor-Couette

eTorque vs Reynolds
*Role of BLs

Ultimate regime



[11. Boundary layers

*Log-law vs Barenblatt
*Coupling BL-bulk

*Role of plumes, structures: exchange of
momentum: statistical description

*Roughness of wall: drag reduction



V. 2-phase flow:
particles & drops In
turbulence, clouds

Clustering, coalescence

«2-way coupling, 4-way coupling

sink velocity of particles in turbulence
effective forece models

sLagrangian vs Eulerian view



V. Turbulence with
phase-transition



Instrumentation

Probes on microscale: bolometers, aneometers

High-speed 3D PIV: resolution!

Radio particles

Temperature control crucial



Why now?

High-speed cameras

Data storage and handling in Thytes



|. Rayleigh-Benard convection



RB system “drosophila” of fluid
dynamics & pattern formation



Musselt
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Convection rolls




Applications

Convection in earth mantle (Pr = 1021)
Convection in earth kernal

Convection In stars

Convection in the ocean (including thermohaline)
Convection in the atmosphere

Metal production



Convection In atmosphere

S

l Column of air
expanding over
hot surface

Air flow replacing
rising air




Convection 1n the ocean




Mantle convection

Glatzmeiler
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Schlieren visualization of global flow

water,
Pr=4,
Ra=5 10°

Tong, Xia et al.,

Hongkong



IN RB convection

Role of plumes
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2D OB-simulation, Pr=4, Ra=10°
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2D OB-simulation, Pr=4, Ra=10°
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2D OB-simulation, Pr=2540, Ra=10°
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2D OB-simulation, Pr=2540, Ra=10¢
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Focus on global scaling
laws



Nu(Ra): Scaling Nu~Rav

'Y: 2/7 (Castaing, Libchaber, Kadanoff, et al., JFM, 1989, Siggia, ARFM 1994)

Y— 0.31 (sreenivasan., Nature, 2000)
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Nu(Ra) for large Ra
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Reference Auid Pr Ra range
Ashkenazi & Steinberg (1999)  SFg 1-93 10°—10M 0.30 + 0.03
Garon & Goldstein (1973) H,O 5.5 1073 x 10° 0.293
Tanaka & Miyata (1980) H»,O 6.8 3 x 1074 x 10° 0.29
Goldstein & Tokuda (1980) H,0 6.5 10°-2 x 101 4
Qiu & Xia (1998) H,0 ~ 7 2 x 10°-2 x 101° 0.28
Lui & Xia (1998) H,0 ~ 7 2 x 108-2 x 1010 0.28 4+ 0.06
Shen et al. (1996) H,O ~ 7 8 x 107-7 x 10° 0.281 +£0.015
Threlfall (1975) He 0.8 4 x 10°-2 x 10° 0.280
Castaing et al. (1989) He 0.7-1 < 10" 0.282 4 0.006
Wu & Libchaber (1991) He 0.6-1.2 4 x 1071012 0.285
Chavanne et al. (1997) He 0.6-0.73 3 x 10710 2
Davis (1922) air ~ | < 108 0.25
Rossby (1969) He 0.025 2 x 10°-5 x 107 0.247
Takeshita et al. (1996) He 0.025 106108 0.27
Cioni et al. (1997) He 0.025 S x 10°-5 x 10% 0.26 +0.02
Cioni et al. (1997) He 0.025 4 x 1082 x 10° 0.20
Glazier et al. (1999) He 0.025 2 x 10°-8 x 1010 0.29 +0.01
Horanyi et al. (1995) Na 0.005 < 106 0.25

TaBLE 1. Power-law exponents y of the power law Nu ~ Ra’ for various experiments. The ex-
periments were done with different aspect ratios; however. no strong dependence of the scaling
exponent p on the aspect ratio is expected (in contrast to the prefactors, which do have an aspect
ratio dependence as found by Wu & Libchaber 1992).



Central 1dea: Splitting of dissipations
Into bulk and BL contribution

€u = €u,BL T €u.bulk

€9 = €9.BL T €0.bulk




Decomposition of kinetic and
thermal dissipation
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Phase diagram with data points




Prediciton of Nu(Pr) for large Pr
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Also Nu(Ra): no (pure) power law!
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Ahlers et al., PRL 2001

Experimental
confirmation
that there Is
no power law
In Nu(Ra)!



Summary of GL theory

eSystematic, Boussinesqg-eq. & Prandtl-Blasius based
theory > Phase space of RB convection

*No power laws as in general BL and bulk contribute
*Power laws only recover asymptotically

« Consistent with experimental observations

Nu (Ra, Pr)
Re (Ra, Pr)
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