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What will this talk cover?

Brief introduction to modern flow visualization
techniques

Unique features of helium IT visualization
- Phenomena to be studied

- Particle selection and seeding techniques

- Experimental system components

Examples of PIV experiments in helium IT
- Counterflow in channels and around bluff bodies
- Forced flow helium IT

- Superfluid vortex line trapping

Summary
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Particle Imaging Techniques

Techniques that involve introducing small fracer particles into the fluid
stream and monitoring their motion.

- Laser Doppler Velocimetry (LDV)

* Point velocity measurement

* Additional information (particle size, 3D)
- Pulsed Light Velocimetry (PLV)

* Particle Image Velocimetry (PIV)

* Whole velocity field measurement

Equipment to conduct these experiments is commercial available from a
number of manufacturers. For liquid helium application there are some
special requirements (optical cryostat) and challenging issues (particle

seeding).

Annu. Rev. Fluid Mech. 1991, Vol. 23, pp. 261-304
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Turbulent fluid scaling issues

What is the dimension of the phenomenon to be studied and
how does that compare to particle size? For example,

» Superfluid vortex core ~ 1 nm
» Vortex line spacing ~ 1 um )\ k

»  Turbulence scales: Kolmogorov: 7 ~ 7 ~106m
Re’
» Turbulent boundapy layer: o =
u_(y)" =
U R V4
A g
where n~ 7 T ;oo
See: H. Schlichting, Boundary Layer Theory, McGraw, 1955 | | i
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Two Fluid Model* for Helium II

8

Helium IT can be thought to consist of two
interpenetrating fluids that are fully

miscible and have temperature dependent § |
densities (p, and p,,) i

¢'<—o<—o"<—o o= o= == -
—0 0 — o=
q‘ -0 "'l I"' o= 0 o o= o
=9 —Q

050

NORMALIZED DENSITY

These two components (° superfluid and
onormal fluid) flow under influence of B\ Bl
pressure and temperature gradients. x| Landau. 1941

Average heat current, q = psT<v,>
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Particle -interaction with two fluid
components

Normal and superfluid components are not visible
or separable. Need tracer particles

» Insert solid particles in He IT channel

Dimensional considerations
- Particle diameter (~ 1 um) © Potential flow
- Vortex core (< 1 nm) around a sphere
- Vortex line spacing (6 ~ um)

How do these particles interact with the He IT?

[I,Mmuwn

|
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Particle Image Velocimetry (PIV) Technique

Imaga 2

‘ Interrogation
region

m=age 1

1. Flow seeding and image acquisition 2. Subdivided into interrogation areas
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4. Result - velocity field 3. Cross correlation process (N, > 1)
: . . AX(X, 1
Velocity at x,t is defined as: u(x,t)= (—)

At
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Particle Selection and Tracking

Slip velocity between particles and fluid g
- small, neutral density particles, pq = 145 kg/m3

s (pHeu —pp)gdg Vgip ~ mm/s ford, ~ 1 um &
P 1841, p = 1100 kg/m3

He Il

Response time (fidelity)

2
£~ 2 1 ms for d, = 10 He Il
-~ ~ = C
124 7~1ms for d, m
It is best to minimize vy, and t: p, ~ py.rr ~145
kg/m3 and to have small size (d < 10 mm).

Ideally vg;, < few % of vy, for good measurements,
but there is also some advantages experimentally
to not have neutrally buoyant particles. For
example, if bad seeding or particle agglomeration
occurs, they leave the view field.
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Properties of good tracer particles

- Particle concentration: ~ 10 particles

— Statistics for velocity measurement /integration area
— Differentiate between individual particles

+ The lower limit on particle g0 T
size: particles need to 2107 P
scatter enough light for 2 0] S
. e eg e @ o
Image acquisition. R
10 |
S
* d, > 1 um ~2) (for green ® 10, |
light with A = 532 nm) is s 1
preferable. 3% jr.’
gm B R R Y R Sl A S BT S VR e’

] ] = g 1 ) 3 "
particlie slzey/swavelenglLn CIP/A

For best experiments: 1 um < d, < 10 um with narrow size distribution
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Introducing Solid Particles into He IT

Initial conditions:

- Solid particles are stored at room temperature
* in air (or other gases)
* Inliquids (water)

Experimental conditions

- T~ 2K

- Partial vacuum: p,,< 5 kPa

Issues of concern in He IT application

- Introducing particles into low pressure environment
requires particle fransport system

Van der Waals attraction

- Small particles will fend to agglomerate due to London
dispersion forces
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Commercial tracer particles

* Hollow glass spheres
- PQ, 3M: d, ~ 10 um to hundreds um
- p, between 140 to 200 kg/m3
- large size and density distribution per sample
- only a small fraction of the particles are neutrally
buoyant
- large size -> large settling velocity (5 to 100 mm/s)
and time constant (10 to 100 ms)
- TSI: d, = 8 o 12 um, p, = 1100 kg/m3
narrower size distribution but still large size and
density

- Polymer micro spheres
- Not neutrally buoyant but widely available in small
sizes with narrow size distribution
Bangs laboratory: d, = 1.7 um, p, = 1100 kg/m3
Calculated: vy, = 1.2 mm/s, 1, = 0.15 ms at 1.8 K
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Commercial tracer particles seeding into He II

to the experiment
Valve 1
@i

to the pump
Valve 2

a050 0080000088 polymer particles
09005092%%50| and glass beads

porous
ceramic plug

pressurized helium gas
Valve 3

EuTuCHe

» Goal: o remove air around the particles and
disperse the particles as much as possible
before and during the particle injection.

+ Two phase fluidized bed technique: 1.7 um
polymer particles with 100 um glass beads
contained in a small vessel (particle ratio 2:1).

* Pump overnight, purge ~ 10 times, possibly apply heat.
* Use at most a few grams of tracer particles in the
seeder.

* Injection pressure of the He gas adjusted so the
solid glass spheres are fluidized and the polymer
particles are seeded into the liquid helium.
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Solid hydrogen particles

»  Advantages of sH, (sH,/D,) particles

- Injection from gaseous or liquid state so no need to
purge the particles

- Particles can be removed from experimental system by
warming to > 30 K and pumping vapor away

- Disadvantages

- Particles are not stable and tend to agglomerate into
large (d ~ mm) structures

- Particles are not spherical or necessarily uniform in size,
which can result in large variation in brightness.
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Solidified H, tracer particles

* Chopra & Brown (Phys. Rev. Vol. 108, 157 (1957))

-50-50 mixture by volume of hydrogen and deuterium injected into liquid
through a 8 mm ¢ tube

-neutrally buoyant H,/D, particles of diameter less than 1 mm

- Murakami (Cryogenics Vol. 29, 438 (1989))

-H,/D, mixture injected through a heated tube in the gas phase. And
sifted through a screen

-Initial stage: particles small ~ 1 um then agglomerate to ~ 100 um after
passing through a wire screen.

- Gordon & Frossati (3. Low Temp. Phys. Vol. 130, 15 (2003))

-Solid particles from deuterium gas injected in the gas phase. Adding
helium gas (ratio 1:20 to 1:1000) prevent the particles from sticking
together before they enter the liquid helium phase.

-Deuterium particles of diameter less than 100 nm.
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Helium IT PIV experimental results
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Counterflow PIV He IT apparatus

Cross section
Heater

Injecting tube —7" 1 J_
G-10 wall / .
~ 2 m /// Laser sheet
View field
2 N Heater
| = =
z E Ev ‘/ Heater substrate
v H J

EuTuCHe

Geneva April 2007




Analysis of PIV in counterflow He IT

Vmean: 0.0404 0.0414 0.0424 0.0434 0.0444 0.0455

7.24 kW/m?

Averaged velocity field at 1.62 K and q

100 mm/s

9
T

05

V, =

<v> ~ 40 - 45 mm/s while,
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Velocity v measured by PIV (mm/s)

Comparison with theoretical results

50

45
401
35 1
304

25

-
[4)]
1

10

T=1.80 K

* PIV results represent the

mean velocity of whole flow
field.

20 <

0 Channel upward
® Channel upside down
Theoretical value

- Theoretical value is
calculated from

* v, is clearly less than v,

- Slip velocity can be
eliminated by averaging two
configurations (v, ~ 5

0 1000 2000 3000 4000 5000
Applied heat flux (W/m®)

EuTuCHe
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Results at various temperatures

160

All temperatures
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* Ratio of particle to normal fluid

velocity ~ constant at all
temperatures. v,/v, ~ 0.5

* Particle motion observed in pure

superflow: Chung and Critchlow
(PRL 14,892 (1965))

» Suggestion of effective viscosity

of superfluid component: T. Zhang
& S. Van Sciver, JLTP Vol. 138,
865 (2005)

- Recent theory by Sergeeyv,

Barenghi and Kivotides




. , . . . . UNIVERSITY OF
Motion of micron size particles in turbulent helium II HEWCASTLE

Y.A. Sergeev, C. F. Barenghi and D. Kivotides, ﬁj
Phys. Rev. B74, 184506 (2006)

I e e

16

1a {  Theory agrees well with
T 12 1 : o ~
é i | experiment: V,,=0.5V,
2 8y o
2 s B
>l Do
2 i =

1 1 1 1 1
a 2 4 6 i 18 12 14 16

V_(cm/s)
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Counterflow around a cylinder

This is a classic problem of fluid mechanics.

* Large scale vortex shedding occurs behind the cylinder
* Details scale with Re

Karman Vortex Street
Alejandro Selkirk Island

Numerical codes (e.g.
Fluent®) can model classical
flow in some cases

How does counterflow helium IT behave in this geometry?
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Cylinder He IT counterflow experiment

Channel length:
200 mm

20x40 mm?2

View field area:
20%x30 mm?

6.35 & 2 mm
Tracer particles:

d, = 1.7 um
sp=11
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Cylinder diameters:

Channel cross section:

Laser Sheet

Parficles injecting fube

o - ————

Super Fluid
Normal Fluid

L

Channel Wall

Transparent
cylinder

Injecting Nozzle
=

Film Heater




Convection in front of cylinder

Note: 1 pixel/ms = 22 mm/s

mean: 0.300 0.100 0500 0900 1.300 1.700 2.100 2.500
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Streamlines confirm vorticity
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Flow over a backward facing step
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Helium IT Counterflow Stepped Channel

Test Section : ‘Iv;islgogse er the
- A: 15 x 30 mm?
- B: 23 x 30 mm?
- C: 40 x 30 mm?

- view field area = 50 x 40 mm?2

- Nichrome film heater
tube for the

injection

Polymer tracer particles:
- d, =17 um
- sp gravity = 1.1

EuTuCHe Geneva April 2007

size of the window on the
cryostat allowing to watch the
motion of the particles with the
camera




Particle tracks using PIV (T = 1.6 K)

T=16K,q,=11.8 kW/m?
v, = 182 mm/s; Re = 37600

*1 pixel/s = 24 mm/s
I e I

ean: -0.460 0.067 0.594 1.121 1.648 2.175 2.702 3.229
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Particle tracks using PIV (T = 2 K)

Vmean: -0.648 -0.328 -0.007 0.313 0.634 0.954 1.274 1.595
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Forced flow helium PIV apparatus

~ Top of the channel
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Forced flow velocity field

Umean: 1.33 1.50 1.61 1.70 1.83 1.98 2.08 247 2.33 2.45 2.54 2.606 2.83 Tb = 2.1 K

U = 57.6 mm/s

*Large uniform velocity
region in center of
channel (U ~ U_,)

*Velocity profile near
the wall suggests the
existence of boundary
layer

200

X (Pixel)
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Forced flow helium IT boundary layer

1.0
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For classical turbulence flow in
smooth round pipe, the velocity
profile can be written in the
following form:

1
o (&)
U R

max

However, this channel is of
square cross section so some
modification of the above
form is expected.

-1.0 -0.5 0.0 .5 1.0
2y/W

Upean™: Calculated average velocity; W: Channel width; y: location of the data
point along the vertical axis, zero sets to be bottom of the channel.
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sH, particle trapping (Bewley, et al)

4 mm

Normal He I, T > T,

G. P. Bewley, D. Lathrop and K. Sreenivasan, Nature Vol. 441, 588 (2006)
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Vortex lines in rotating helium IT

cryoslat

forming
H H — OptICS N
side views (data) 1 mm : \
- - trigger
top views (schematic) computer
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nteraction of sphere and quantised vortex

D. Kivotides, C.F. Barenghi and Y.A. Sergeev

The velocity of each point X along the vortex depends on

the Biot-Savart law, the presence of the spherical boundary,

the potential superflow induced by the moving sphere and the friction
with the normal fluid:

The acceleration of the sphere depends on the presence of the
boundary, the time-varying superflow and the drag with the
normal fluid:

av - - =
meﬁazfd+ft+fb
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Another possible PIV method:

(Dan McKinsey, Yale)

Laser-induced fluorescence of He2 molecules in liquid helium
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