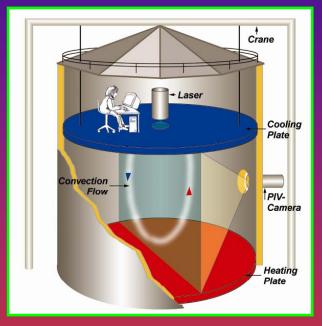


BARREL OF ILMENAU Contributions to research in turbulence


Ronald du Puits, Christian Resagk and André Thess

Ilmenau University of Technology Dept. of Thermo- and Magnetofluiddynamics POB 100565, D-98693 Ilmenau, GERMANY contact: ronald.dupuits@tu-ilmenau.de

<u>Financial support:</u> Deutsche Forschungsgemeinschaft, Thüringer Wissenschaftsministerium, Bundesministerium für Bildung und Forschung

Technique and physical data

Technique:

- ➢ electrically heated bottom plate with a water-flown overlay for homogeneous temperature distribution ∆T=1K,
- Free hanging and water-cooled top plate
- > Adiabatic sidewall with active compensation heating

Physical parameter:

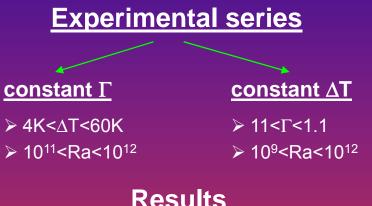
- > d=7.15m, 0.05m<h<6,29m, 2K<∆T<60K</p>
- > 10⁵<Ra<10¹², 1<Γ<150, Pr=0.7</p>
- > Nu<650 (P=10kW), Re_G<3x10⁵ (v=0.6m/s), Re_{τ}<320 ($\delta=10mm$)

Helium vers. large-scale experiments

High Rayleigh number experiments?

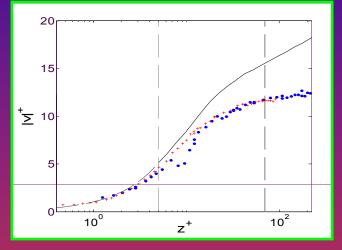
 $Ra = \frac{\beta g h^3 \Delta T}{2}$

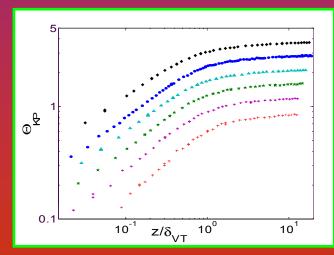
Helium experiments


- **"+**" highest Ra number up to Ra=10¹⁷,
- **"+**" small-scale experiments,
- **"+**" short time scales,
 - very small turbulent structures,
 - difficult measurement access,
 - less resolved (spatial and temporal) measurements.

Large-scale experiments

- [•] Moderate Ra number up to Ra=10¹³,
- large-scale experiments,
- Iong time scales,
- "+" relatively large turbulent structures,
- **"+"** simple measurement access,
- "+" highly resolved (spatial and temporal) measurements.




Previous experimental research

Results

- \succ global heat flux, Nu~Ra^{1/3} for both series with increasing exponent for $Ra \rightarrow 10^{12}$ J. Fluid Mech. 572(2007),
- > global flow pattern and aspect ratio dependency, coherent oscillations, transition points: G=1.7 and G=3.7 Phys. Fluids 18(2006), Phys. Rev. E 75(2007),
- > boundary layer structure, $v(z) \neq Cz$, $T(z) \sim z^{1/2}$, non-Blasius boundary layer J. Fluid Mech. 572(2007), Phys. Rev. E (to be published).

th:

Present (and future) activities

- temperature profiles at the heating plate with improved sensor geometry: evidence of cooling plate profiles, non-Boussinesq effects, radiation, spatial evolution of boundary layer, local heat flux,
- 3-d particle tracking system:
 systematic study of the global flow pattern and ist aspect ratio dependency,
- > transitional effects at Ra \approx 10¹² (collaboration with institute Neel, Grenoble),
- mixed convection and room ventilation in high pressure SF₆, construction of a 1m³ vessel (collaboration with various german universities),
- boundary (shear) layer research: analogies between various model experiments like pipe, taylor-couette, rayleigh-bénard (in discussion).

Our contribution to turbulence research

- highly resolved (in space and time) measurements of velocity (3-d) and temperature at each cell position,
- high aspect ratio and high Ra number experiments, velocity and temperature field without the influence of sidewalls (and a mean flow), reference data for numerical simulations,
- > coherent oscillations in highly turbulent convection,
- global flow pattern and aspect ratio dependency, direct measurements of the global flow field using a novel 3-d particle tracking velocimeter.