Experiments in *geostrophic* and *zonostrophic* turbulence [G/ZT] Peter L Read (University of Oxford, UK) Boris Galperin (Univ. of South Florida, USA)

- What is G/ZT?
- Why is it important?
- Experimental requirements
- Advantages of low viscosity?

What is G/ZT?

- Turbulent flows driven by mechanical or buoyancy forces in the presence of rapid rotation
- Rapid rotation imparts 'stiffness' and coherence parallel to rotation axis
 - Taylor-Proudman theorem $(2\Omega . \nabla) \mathbf{u} \approx 0$
- Flows are highly anisotropic and quasi-2D
- Conservation of energy AND enstrophy in inertial ranges
 ⇒ Upscale energy cascade
 - \Rightarrow Downscale enstrophy cascade?
- Spherical curvature and/or radially-varying topography $\Rightarrow \text{Extra anisotropy}$ $\Rightarrow \text{Zonal jets....}$ $\beta = \frac{2\Omega}{H} \frac{\partial H}{\partial x}$

Why is G/ZT important?

- Paradigm for large-scale circulation in planetary atmospheres and oceans (inc. Earth)
 - Transport of heat, momentum, vorticity, chemical constituents
 - Climate
 - Predictability and weather forecasting
- Zonostrophic flow (with sphericity or topography)
 - Non-local energy 'cascade'
 - Zonal banding in gas giant planets (Jupiter, Saturn...)?
 - Zonal banding and currents in the open oceans?
- Paradigm for flows in turbomachinery and rotating systems in engineering
 - Aircraft engine efficiency and performance
 - Mixing and stirring in chemical engineering....etc.
- Isomorphic with certain forms of MHD turbulence in plasmas
 - Plasma technology and energy generation
 - Astrophysical plasmas

Experimental requirements

• Parameter	Defn I	Desired	To date	e Jupiter
Rossby No.	U/ Ω L	< 10-2	10-2	< 10-2
Burger number	$N^{2}H^{2}/\Omega^{2}L^{2}$ $[N^{2} = -g(\partial \rho / \partial z) / \rho]$	< 10-3	10-3	3 x 10 ⁻⁵
Ekman number	$\nu/\Omega H^2$	< 10-6	10-5	< 10 ⁻¹² ?
Reynolds number	UL/ v	> 10 ⁴	~500	> 10 ¹⁴ ?
Beta parameter	$\beta L^2/U$	>> 30	~400	> 100
Zonostrophy	$\beta U \tau_E^2$	>> 10 ³	200-	> 10 ¹²
parameter	$\left[\tau_{E} = H / \sqrt{v\Omega} \right]$		800	

Red parameters -> affected/limited by fluid viscosity

Advantages of a low viscosity fluid

- Very small dissipative scales
- Broad and well developed inertial ranges
 - Both energy AND enstrophy cascades?
 - Zonostrophic anisotropies...?
- Ability to achieve geophysically realistic/relevant parameter ranges and degree of nonlinearity
- Would allow rigorous tests of scaling predictions much more conclusively than possible hitherto
 - even on largest scales with 'normal' fluids
 - cf Coriolis facility, Grenoble (France)

