ISIS Neutron and Muon Source

Accelerator Physics
 Lecture 6: Longitudinal Dynamics

Rob Williamson

$27^{\text {th }}$ October 2022

ISIS Neutron and Muon Source

Contents

Acceleration and Energy Gain
Time Varying Fields
The Synchrotron
Energy Ramping
Principle of Phase Stability
Off-Energy Particles
Longitudinal Dynamics
Longitudinal Hamiltonian
Small Amplitude Oscillations
Synchrotron Oscillations
Large Amplitude Oscillations
Summary

Acceleration and Energy Gain, 1

- To accelerate we require a force in the direction of motion!
- Newton-Lorentz force on a charged particle:

$$
\begin{equation*}
\vec{F}=\frac{\mathrm{d} \vec{p}}{\mathrm{~d} t}=q(\vec{E}+\vec{B} \times \vec{v}) \tag{1}
\end{equation*}
$$

- Second term is always perpendicular to motion: no acceleration
- Hence to accelerate along the direction of motion we need an electric field in that direction.

$$
\begin{equation*}
\frac{\mathrm{d} p}{\mathrm{~d} t}=q E_{z} \tag{2}
\end{equation*}
$$

Acceleration and Energy Gain, 2

- In relativistic dynamics energy and momentum are linked,

$$
\begin{equation*}
E^{2}=E_{0}^{2}+p^{2} c^{2}, \quad \mathrm{~d} E=v \mathrm{~d} p \tag{3}
\end{equation*}
$$

- The rate of energy gain per unit length of acceleration is therefore,

$$
\begin{equation*}
\frac{\mathrm{d} E}{\mathrm{~d} z}=v \frac{\mathrm{~d} p}{\mathrm{~d} z}=\frac{\mathrm{d} p}{\mathrm{~d} t}=q E_{z} \tag{4}
\end{equation*}
$$

- And the kinetic energy gained from the electric field along z is,

$$
\begin{align*}
\mathrm{d} W & =\mathrm{d} E=q E_{z} \mathrm{~d} z \\
\therefore \quad W & =q \int E_{z} \mathrm{~d} z=q V \tag{5}
\end{align*}
$$

Units of Energy

- Accelerator physics typically uses units of electron volts for energy.
- 1 eV (electron volt) is the kinetic energy lost (or gained) by a particle of unit charge when accelerated from rest through a potential difference of one volt in vacuum.
- Some useful conversions:

	1 eV	$1.602 \times 10^{-19} \mathrm{~J}$	
	$1 \mathrm{eV} / \mathrm{c}^{2}$	$1.783 \times 10^{-36} \mathrm{~kg}$	
electron	$9.109 \times$	$10^{-31} \mathrm{~kg}$	0.511
proton	$1.673 \times$	$10^{-27} \mathrm{~kg}$	938.272

Methods of Acceleration

- Electrostatic fields are limited by insulation problems and magnetic fields don't accelerate
- For circular machines DC acceleration is impossible as $\oint \vec{E} \cdot \mathrm{~d} \vec{s}=0$
- From Maxwells equations,
$\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}, \quad \oint \vec{E} \cdot \mathrm{~d} \vec{s}=-\iint \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{A}$
a time varying magnetic field generates an electric field.
- Therefore, use time varying fields which for most accelerator applications are at RF frequencies.

Phase Conventions

1. For linear accelerators, the origin of time is taken as the positive crest of the RF voltage.
2. For circular accelerators, the origin of time is taken as the positive gradient zero crossing of the RF voltage.

3. We will stick to the circular accelerator convention.

ISIS Neutron and Muon Source

The Synchrotron, 1

- Constant orbit during acceleration
- Revolution frequency increases with energy
- RF cavity frequency increases with energy
- Magnetic field strength increases to maintain orbit radius
- Synchronism condition:

$$
\begin{equation*}
T=h T_{R F}=\frac{2 \pi R}{v} \tag{7}
\end{equation*}
$$

The Synchrotron, 2

The synchrotron is so called because the accelerating RF cavities and the magnetic fields all have to work in synchronism in order for it to work. There is a synchronous RF phase for which the energy gain is precisely what is required to match the increase in magnetic field each turn. This implies the following conditions:

- Energy gain per turn, $\Delta E_{\text {turn }}=e V \sin \phi_{s}$
- Synchronous particle
- RF synchronism $\omega_{\mathrm{RF}}=h \omega$
- Constant orbit
- $B \rho=p / e$, implying a varying magnetic field

ISIS Neutron and Muon Source

Examples of Synchrotrons

ISIS Spallation Source, UK

Diamond Light Sources, UK

LHC, CERN, Switzerland

Glasgow Synchrotron, UK

Energy Ramping

The momentum and magnetic field must increase following the magnetic rigidity equation

$$
\begin{align*}
p=e B \rho & \Rightarrow \frac{\mathrm{~d} p}{\mathrm{~d} t}=e \rho \frac{\mathrm{~d} B}{\mathrm{~d} t} \tag{8}\\
\Delta p_{\text {turn }} & =e \rho \frac{\mathrm{~d} B}{\mathrm{~d} t} T \\
& =e \rho \frac{\mathrm{~d} B}{\mathrm{~d} t} \frac{2 \pi R}{v} \tag{9}
\end{align*}
$$

From equation 3 we have $\mathrm{d} E=v \mathrm{~d} p$, therefore

$$
\begin{align*}
\Delta E_{\mathrm{turn}} & =v \Delta p_{\mathrm{turn}} \\
& =2 \pi \operatorname{Re} \rho \frac{\mathrm{~d} B}{\mathrm{~d} t} \tag{10}
\end{align*}
$$

ISIS Neutron and
Muon Source

RF Acceleration

The energy gain is provided by the RF voltage,

$$
\begin{array}{r}
\Delta E_{\text {turn }}=2 \pi R e \rho \frac{\mathrm{~d} B}{\mathrm{~d} t}=e V \sin \phi_{s} \\
\phi_{s}=\arcsin \left(2 \pi R \rho \frac{\dot{B}}{V}\right) \tag{12}
\end{array}
$$

where $\phi_{s}=$ synchronous phase. Each synchronous particle satisfies the rigidity equation (eqn 8). They have the nominal energy and follow the nominal trajectory.

- Acceleration increases the revolution frequency, so the RF frequency has to follow

$$
\begin{equation*}
f=\frac{f_{R F}(t)}{h}=\frac{v(t)}{2 \pi R}=\frac{1}{2 \pi R} \frac{p(t) c^{2}}{E(t)}=\frac{1}{2 \pi R} \frac{e c^{2} \rho B(t)}{E(t)} \tag{13}
\end{equation*}
$$

- Using the relativistic equation $E^{2}=\left(m_{0} c^{2}\right)^{2}+p^{2} c^{2}$ we find the RF frequency must follow the magnetic field with

$$
\begin{equation*}
\frac{f_{R F}(t)}{h}=\frac{c}{2 \pi R} \sqrt{\frac{B(t)^{2}}{B(t)^{2}+\left(m_{0} c^{2} / e c \rho\right)^{2}}} \tag{14}
\end{equation*}
$$

- When B becomes large in comparison to $m_{0} c^{2} / e c \rho$ (corresponding to $v \rightarrow c$) the frequency tends to $c / 2 \pi R$

Revolution Frequency Increase

We've seen that the revolution and RF frequency change during acceleration depending on the particle type and the magnetic field ramp. This is more important at lower energies and for heavier particles.

PSB	$50 \mathrm{MeV}-1.4 \mathrm{GeV}$	$602 \mathrm{kHz}-1746 \mathrm{kHz}$	190%
PS	$1.4 \mathrm{GeV}-25.4 \mathrm{GeV}$	$437 \mathrm{kHz}-477 \mathrm{kHz}$	9%
SPS	$25.4 \mathrm{GeV}-450 \mathrm{GeV}$	$43.45 \mathrm{kHz}-43.478 \mathrm{kHz}$	0.06%
LHC	$450 \mathrm{GeV}-7 \mathrm{TeV}$	11.245 kHz	2×10^{-6}

In lower energy circular accelerators the RF system needs more flexibility.

Particle Types and Acceleration

The specific accelerating technology depends upon the evolution of the particle velocity

- Electrons reach a constant velocity ($\sim c$) at low energy
- Protons and heavy ions require much more energy to reach a constant velocity
- RF resonators will be optimised for different velocities/frequencies
- Magnetic field follows the momentum increase

$$
E=\gamma m_{0} c^{2}, \gamma=\frac{E}{E_{0}}=\frac{1}{\sqrt{1-\beta^{2}}}
$$

Electron, 0.511 MeV ; Proton, 938 MeV ; Uranium-238, 222 GeV

Phase stability in a Linac - 1

- Consider a series of gaps, operating in the 2π mode
- 2π mode implies \vec{E} is the same in all gaps at any given time
- $e V_{s}=e V \sin \phi_{s}$, the energy gain required for a particle to reach the next gap with the same RF phase: P_{1}, P_{2}

Phase stability in a Linac - 2

- Consider a series of gaps, operating in the 2π mode
- 2π mode implies \vec{E} is the same in all gaps at any given time
- $e V_{s}=e V \sin \phi_{s}$, the energy gain required for a particle to reach the next gap with the same RF phase: P_{1}, P_{2}

Phase stability in a Linac - 3

- With increasing energy comes an increase in velocity
- M_{1} and N_{1} move toward the synchronism \Rightarrow STABLE
- M_{2} and N_{2} move away from synchronism \Rightarrow UNSTABLE
- N.B. Ultra-relativistic particles no longer gain velocity

Off-Energy Particles

If a particle is slightly off the design momentum it will have a different orbit.

- Path length of an orbit displaced by x

$$
\mathrm{d} s_{0}=\rho \mathrm{d} \theta \quad \mathrm{~d} s=(\rho+x) \mathrm{d} \theta
$$

- Relative difference in path length ($D_{x}=$ dispersion)

$$
\frac{\mathrm{d} l}{\mathrm{~d} s_{0}}=\frac{\mathrm{d} s-\mathrm{d} s_{0}}{\mathrm{~d} s_{0}}=\frac{x}{\rho}=\frac{D_{x}}{\rho} \frac{\mathrm{~d} p}{p}
$$

Momentum Compaction

- Integrating leads to the total path length change

$$
\begin{equation*}
\Delta C=\oint \mathrm{d} l=\oint \frac{x}{\rho\left(s_{0}\right)} \mathrm{d} s_{0}=\oint \frac{D_{x}\left(s_{0}\right)}{\rho\left(s_{0}\right)} \frac{\mathrm{d} p}{p} \mathrm{~d} s_{0} \tag{15}
\end{equation*}
$$

note that since D_{x} is usually positive the total path length increases for higher energy particles.

- Momentum compaction factor, α_{c} is defined as

$$
\begin{equation*}
\alpha_{c} \equiv \frac{\mathrm{~d} L / L}{\mathrm{~d} p / p}=\frac{1}{L} \oint \frac{D_{x}\left(s_{0}\right)}{\rho\left(s_{0}\right)} \mathrm{d} s_{0} \approx \frac{1}{C} \sum_{i}\left\langle D_{x}\right\rangle_{i} \theta_{i} \tag{16}
\end{equation*}
$$

where $\left\langle D_{x}\right\rangle_{i}$ and θ_{i} are the average dispersion and the bending angle of the $i^{\text {th }}$ dipole.

Transition Energy, 1

- Off-momentum particles have different revolution frequencies to on-momentum particles due to different orbit lengths and velocities

$$
\begin{equation*}
f_{r}=\frac{\beta c}{2 \pi R} \quad \Rightarrow \quad \frac{\mathrm{~d} f_{r}}{f_{r}}=\frac{\mathrm{d} \beta}{\beta}-\frac{\mathrm{d} R}{R}=\frac{\mathrm{d} \beta}{\beta}-\alpha_{c} \frac{\mathrm{~d} p}{p} \tag{17}
\end{equation*}
$$

- Calculate $\mathrm{d} \beta / \beta$ as a function of $\mathrm{d} p / p$

$$
\begin{equation*}
p=\gamma m_{0} \beta c \Rightarrow \frac{\mathrm{~d} p}{p}=\frac{\mathrm{d} \beta}{\beta}+\frac{\mathrm{d} \gamma}{\gamma}=\left(1-\beta^{2}\right)^{-1} \frac{\mathrm{~d} \beta}{\beta}=\gamma^{2} \frac{\mathrm{~d} \beta}{\beta} \tag{18}
\end{equation*}
$$

Transition Energy, 2

- Putting these two equations together (eqns 17 and 18) we get the relative change in revolution frequency

$$
\begin{equation*}
\frac{\mathrm{d} f_{r}}{f_{r}}=\left(\frac{1}{\gamma^{2}}-\alpha_{c}\right) \frac{\mathrm{d} p}{p}=\eta \frac{\mathrm{d} p}{p} \tag{19}
\end{equation*}
$$

where $\eta=\gamma^{-2}-\alpha_{c}=\gamma^{-2}-\gamma_{t}^{-2}$ is the slip factor

- Annoyingly in some references η is defined with a minus sign so be careful!
- Transition energy is when $\gamma=\gamma_{t}=\alpha_{c}^{-1 / 2}$ and $\eta=0$. At this energy the revolution frequency is independent of momentum deviation.
- Below transition a higher momentum particle has a higher f_{r} than the synchronous particle, above transition the converse is true.

Phase stability in a Synchrotron - 1

The definition of the slip factor, η (equation 19), an increase in momentum:

- Below transition $\left(\eta>0 \Rightarrow \gamma<\gamma_{t}\right)$ gives a higher revolution frequency (increase in velocity dominated)
- Above transition $\left(\eta<0 \Rightarrow \gamma>\gamma_{t}\right)$ gives a lower revolution frequency as $v \approx c$ and a longer path (momentum compaction dominated)

Phase stability in a Synchrotron - 2

The definition of the slip factor, η (equation 19), an increase in momentum:

- Below transition $\left(\eta>0 \Rightarrow \gamma<\gamma_{t}\right)$ gives a higher revolution frequency (increase in velocity dominated)
- Above transition $\left(\eta<0 \Rightarrow \gamma>\gamma_{t}\right)$ gives a lower revolution frequency as $v \approx c$ and a longer path (momentum compaction dominated)

ISIS Neutron and Muon Source

Phase stability in a Synchrotron - 3

$$
\eta=\frac{1}{\gamma^{2}}-\alpha_{c}=\frac{1}{\gamma^{2}}-\frac{1}{\gamma_{t}^{2}}
$$

Longitudinal Dynamics

- The acceleration of charged particles in circular machines involves the coupled variables of energy and phase. The dynamics is often referred to as synchrotron motion.
- As there is a well defined synchronous particle $\left(\phi_{s}, E_{s}\right)$ it is best to consider particle coordinates with respect to that particle.
- Therefore we introduce a series of reduced variables:

$$
\begin{array}{ll}
\Delta E=E-E_{s}, & \text { particle energy } \\
\Delta p=p-p_{s}, & \text { particle momentum } \\
\Delta \phi=\phi-\phi_{s}, & \text { particle RF phase } \\
\Delta \theta=\theta-\theta_{s}, & \text { azimuthal angle } \\
\Delta f_{r}=f_{r}-f_{r, s}, & \text { revolution frequency }
\end{array}
$$

First Energy-Phase Equation

The RF phase coordinate is related to the azimuth by $\Delta \phi=\phi-\phi_{s}=-h \Delta \theta$, or

$$
\Delta \omega=\frac{\mathrm{d} \Delta \theta}{\mathrm{~d} t}=-\frac{1}{h} \frac{\mathrm{~d} \Delta \phi}{\mathrm{~d} t}=-\frac{1}{h} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}
$$

From the definition of the slip factor (equation 19) and the relation between energy and momentum (equation 3) we get the first energy phase equation:

$$
\begin{equation*}
\frac{\mathrm{d} \phi}{\mathrm{~d} t}=-h \omega_{r} \eta \frac{\mathrm{~d} p}{p}=-\frac{h \omega_{r}^{2} \eta}{\beta^{2} E}\left(\frac{\Delta E}{\omega_{r}}\right) \tag{21}
\end{equation*}
$$

Second Energy-Phase Equation - 1

- The energy gain per turn has already been defined as $\Delta E_{\text {turn }}=e V \sin \phi_{s}$ (equation 11).
- So the rate of energy gain is $\dot{E}=f_{r} e V \sin \phi$
- The rate of relative energy change with respect to the synchronous particle is

$$
\begin{equation*}
\Delta\left(\frac{\dot{E}}{\omega_{r}}\right)=\frac{e V}{2 \pi}\left(\sin \phi-\sin \phi_{s}\right) \tag{22}
\end{equation*}
$$

- Expanding the L.H.S. to first order

$$
\begin{equation*}
\Delta\left(\dot{E} T_{r}\right) \cong \dot{E} \Delta T_{r}+T_{r, s} \Delta \dot{E}=\Delta E \dot{T}_{r}+T_{r, s} \Delta \dot{E}=\frac{\mathrm{d}\left(T_{r, s} \Delta E\right)}{\mathrm{d} t} \tag{23}
\end{equation*}
$$

Second Energy-Phase Equation - 2

- This leads to the second energy-phase equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\Delta E}{\omega_{r}}\right)=\frac{e V}{2 \pi}\left(\sin \phi-\sin \phi_{s}\right) \tag{24}
\end{equation*}
$$

- Combining these two equations leads to the longitudinal equation of motion

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\beta^{2} E}{h \eta \omega_{r}^{2}} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}\right)+\frac{e V}{2 \pi}\left(\sin \phi-\sin \phi_{s}\right)=0 \tag{25}
\end{equation*}
$$

- This second order differential equation is non-linear. Also, the parameters within the bracket (in general) vary slowly in time

Longitudinal Hamiltonian

- The two energy-phase equations can also be derived from a Hamiltonian, \mathcal{H} (the total energy in the system) in canonical variables $(\phi, W)\left(W=\Delta E / \omega_{r}\right)$

$$
\begin{equation*}
\mathcal{H}(\phi, W)=\frac{h \omega_{0}^{2} \eta}{2 \beta^{2} E_{s}} W^{2}+\frac{q}{2 \pi} U(\phi) \tag{26}
\end{equation*}
$$

where $U(\phi)=\int_{\phi s}^{\phi}\left[V\left(\phi^{\prime}\right)-V\left(\phi_{s}\right)\right] d \phi^{\prime}$ is the potential energy

- The two energy-phase equations are then derived from the Hamiltonian by

$$
\begin{equation*}
\frac{d W}{d t}=-\frac{\partial \mathcal{H}(\phi, W)}{\partial \phi} \quad \frac{d \phi}{d t}=\frac{\partial \mathcal{H}(\phi, W)}{\partial W} \tag{27}
\end{equation*}
$$

Single Harmonic RF - 1

Let's take the simple example we've been working with, single harmonic RF with $V(\phi)=V_{1} \sin \phi$

- The potential is:

$$
\begin{equation*}
U(\phi)=V_{1}\left[\cos \phi_{s}-\cos \phi-\left(\phi-\phi_{s}\right) \sin \phi_{s}\right] \tag{28}
\end{equation*}
$$

Single Harmonic RF - 2

- What we have is a potential well created by the RF cavity voltage
- As the synchronous phase changes, or the amount of acceleration required to maintain synchronism changes, the shape of the well changes
- What does the Hamiltonian look like?

ISIS Neutron and Muon Source

Single Harmonic RF - 3

$$
\begin{equation*}
\mathcal{H}(\phi, W)=\frac{h \omega_{0}^{2} \eta}{2 \beta^{2} E_{s}} W^{2}+\frac{q V_{1}}{2 \pi}\left[\cos \phi_{s}-\cos \phi-\left(\phi-\phi_{s}\right) \sin \phi_{s}\right] \tag{29}
\end{equation*}
$$

- How does this help?
- Contours of constant \mathcal{H} are particle trajectories, \mathcal{H}
 is conserved
- Let's consider some particles near to $\phi_{s} \ldots$

Small Amplitude Oscillations - 1

Rearranging the longitudinal EOM (eqn 25) assuming constant β, E, ω_{r} and η :

$$
\begin{equation*}
\ddot{\phi}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0 \text { with } \Omega_{s}^{2}=\frac{h \eta \omega_{r}^{2} e V \cos \phi_{s}}{2 \pi \beta^{2} E_{s}} \tag{30}
\end{equation*}
$$

- Consider small deviations in phase from reference

$$
\begin{align*}
\sin \phi-\sin \phi_{s} & =\sin \left(\phi_{s}+\Delta \phi\right)-\sin \phi_{s} \\
& \cong \Delta \phi \cos \phi_{s} \tag{31}
\end{align*}
$$

- Thereby reducing the motion to a harmonic oscillation

$$
\begin{equation*}
\ddot{\phi}+\Omega_{s}^{2} \Delta \phi=0 \tag{32}
\end{equation*}
$$

where Ω_{s} is the synchrotron angular frequency

Small Amplitude Oscillations - 2

- The synchrotron tune $Q_{s}=\Omega_{s} / \omega_{r}$ is the number of synchrotron oscillations per revolution
- Typical values are $\ll 1,10^{-3}$ for proton synchrotrons and 10^{-1} for electron storage rings
- It also reveals a stability condition for ϕ_{s} as

$$
\begin{equation*}
\Omega_{s}^{2}>0 \quad \Rightarrow \quad \eta \cos \phi_{s}>0 \tag{33}
\end{equation*}
$$

$$
\begin{array}{lll}
\gamma<\gamma_{t} & \eta>0 & 0<\phi_{s}<\pi / 2 \\
\gamma>\gamma_{t} & \eta<0 & \pi / 2<\phi_{s}<\pi
\end{array}
$$

Synchrotron Oscillations - 1

- Consider the simple case of no acceleration ($\phi_{s}=0$), below transition $\left(\gamma<\gamma_{t}\right)$
- Particle S is synchronous
- Particle A is decelerated, f_{r} decreases so it arrives later (i.e. moves toward S)
- Particle B is accelerated,
 f_{r} increases so it arrives earlier (moves toward S)

ISIS Neutron and Muon Source

Synchrotron Oscillations - 2

- The particle oscillates around the synchronous phase, so-called synchrotron oscillations
- The amplitude depends on the initial phase and energy
- Synchrotron frequency is much slower than the transverse (usually multiple revolutions per oscillation)
- The restoring force from the RF electric field is much smaller than the quadrupolar magnetic field

Longitudinal Phase Space

The energy-phase oscillations can also be observed in the longitudinal phase space we saw with the Hamiltonian

The particle trajectory in phase space describes the longitudinal motion.

Longitudinal emittance is the phase space area including all the particles

ISIS Neutron and Muon Source

Longitudinal Phase Space Oscillations

- Particles follow Hamiltonian contours oscillating around the synchronous point $\left(\phi_{s}, E_{s}\right)$
- Energy is exchanged for RF phase like exchanges between kinetic and potential energy
- This is called synchrotron motion

These are all for below transition $\phi_{s}=0^{\circ}$, phase distribution
$\phi_{s}=0^{\circ}$, energy distribution

Large Amplitude Oscillations

- When $\Delta \phi$ is large the EOM is non-linear
- Move from elliptical orbits to hyperbolic close to UFP
- Can use Hamiltonian to calculate the separatrix

Separatrix

- First find the co-ordinate of UFP from $\frac{\mathrm{d} U}{\mathrm{~d} \phi}, \phi=\pi-\phi_{s}$
- Calculate Hamiltonian of the separatrix from equation (29)

$$
\begin{align*}
\mathcal{H}_{\text {sep }} & =\frac{q V_{1}}{2 \pi}\left[\cos \phi_{s}-\cos \left(\pi-\phi_{s}\right)-\left(\pi-2 \phi_{s}\right) \sin \phi_{s}\right] \\
& =\frac{q V_{1}}{2 \pi}\left[2 \cos \phi_{s}-\left(\pi-2 \phi_{s}\right) \sin \phi_{s}\right] \tag{34}
\end{align*}
$$

- Put back into the Hamiltonian to get separatrix equation

$$
\begin{equation*}
\Delta E_{\mathrm{sep}}=\sqrt{\frac{q V \beta^{2} E_{s}}{\pi h \eta}\left[\cos \phi_{s}+\cos \phi+\left(\phi-\pi+\phi_{s}\right) \sin \phi_{s}\right]} \tag{35}
\end{equation*}
$$

ISIS Neutron and Muon Source

RF Buckets

- Restoring force is non-linear \Rightarrow speed depends on $(\phi, \Delta E)$
- Two fixed points, unstable and stable
- Two clear regions (libration and rotation) separated by the separatrix passing through the UFP, at the maximum of $U(\phi)$
- Oscillatory motion around the SFP, at the minimum of $U(\phi)$
- Rotary motion beyond the separatrix, the RF bucket

ISIS Neutron and
Muon Source

Terminology

- Bunches of particles fill only a portion of the bucket area
- RF bucket area $=$ longitudinal acceptance in units of eVs
- Bunch area $=$ longitudinal emittance
$=4 \pi \sigma_{\Delta E} \sigma_{\Delta t}$
- N.B. References can use different definitions for emittances!

Energy Acceptance

- It is clear the separatrix has a maximum at $\phi=\phi_{s}$
- RF bucket height also referred to as energy acceptance

$$
\begin{equation*}
\left(\frac{\Delta E}{E_{s}}\right)_{\max }=\sqrt{\frac{q V \beta^{2}}{\pi h \eta E_{s}}\left[2 \cos \phi_{s}+\left(2 \phi_{s}-\pi\right) \sin \phi_{s}\right]} \tag{36}
\end{equation*}
$$

- It depends strongly on ϕ_{s}
- It becomes smaller when ϕ_{s} is changing during acceleration
- A higher voltage \Rightarrow larger acceptance
- For higher h the same voltage produces a smaller acceptance

Science and
Technology
Facilities Council
ISIS Neutron and Muon Source

Accelerating Bucket - 1

ISIS Neutron and Muon Source

Accelerating Bucket - 2

Examples (all below transition) $\phi_{s}=30^{\circ}$, phase distribution $\phi_{s}=30^{\circ}$, energy distribution

- Motion still divided into two clear regions
- Stable area (RF bucket) reduces in size
- How to accelerate charged particles ...
- What makes a synchrotron a synchrotron ...
- Momentum compaction, slip factors, dispersion, ...
- Transition, phase stability, synchronous phase, ...
- Deriving the equation of motion, ...
- Hamiltonians, potentials, fixed points, ...
- RF buckets, separatrices, emittance, synchrotron tune, ...
- Longitudinal acceptance, energy acceptance, ...
- What next?

Science and Technology
Facilities Council

References

- Frank Tecker, Longitudinal Beam Dynamics in Circular Accelerators, CERN Accelerator School 2018, https://cas.web.cern.ch/schools/constanta-2018
- Edward J.N. Wilson, An Introduction to Particle Accelerators, Oxford University Press, 2001
- S.Y. Lee, Accelerator Physics, $2^{\text {nd }}$ edition, World Scientific, 2007
- H. Wiedemann, Particle Accelerator Physics I, $2^{\text {nd }}$ edition, Springer, 2003
- A. Chao, K.H. Mess, M. Tigner, F. Zimmerman, Handbook of Accelerator Physics and Engineering, $2^{\text {nd }}$ edition, World Scientific, 2013
- Mario Conte, William W MacKay, An Introduction to the Physics of Particle Accelerators, $2^{\text {nd }}$ edition, World Scientific, 2008
- Klaus Wille, The Physics of Particle Accelerators: An Introduction, Oxford University Press, 2005
- D.A. Edwards, M.J. Syphers, An Introduction to the Physics of High Energy Accelerators, Wiley-VCH, 2004
- Philip J. Bryant and Kjell Johnsen, The Principles of Circular Accelerators and Storage Rings, Cambridge University Press, 2008
- Stanley Humphries, Jr., Principles of Charged Particle Acceleration, Dover Publications, 2012

ISIS Neutron and Muon Source

Spare Slides

ISIS Neutron and
Muon Source

Crossing Transition

- Transition \Rightarrow velocity change and path length change compensate
- f_{r} is independent from the momentum offset
- Crossing transition makes the previous ϕ_{s} unstable
- RF needs to rapidly change its phase called a phase jump
- For example, PS (1.4-25.4 GeV) crosses transition at 6 GeV

ISIS Neutron and Muon Source

Beam Matching - 1

- How well can we confine and control particles?
- Want to put them within a given \mathcal{H} contour and keep them there
- Make the density a function of \mathcal{H} and it will conform to the contours in phase space
- It forms a stationary distribution (time independent) assuming \mathcal{H} is time independent or adiabatically varying

- Matched
- Unmatched

Effect of a Mismatch

- Consider a short bunch with a large energy spread
- After a quarter synchrotron oscillation: a long bunch with a small energy spread

- For larger amplitudes the synchrotron motion is slower which leads to filamentation and emittance growth and possible beam loss
- Matched example, Mismatched example, Phase error

ISIS Neutron and Muon Source

Injection

- Where are you injecting from?
- Bunch to bucket transfer \Rightarrow match bunch from bucket of previous accelerator to next
- Particles always subject to longitudinal focusing
- Time structure of beam preserved
- No need for bunch capture, adiabatic or otherwise

- A debunched beam can be captured by the synchrotron RF
- With constant RF volts during injection the beam filaments to fill the bucket

- Increase the RF volts adiabatically (i.e. slowly with respect to the synchrotron motion)
- Capture a large portion in a relatively small emittance

Space Charge

- Another important factor for intense low/medium energy hadron beams is the effect of space charge
- The self field of the beam then becomes significant compared to the RF focusing field
- Depends on the beam distribution and, in general, is a time varying addition to the potential
- Makes analytical solutions, and understanding intense beams difficult!
- Look for stationary distributions WITH space charge
- Useful stationary distribution found by Hofmann and Pedersen

