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Problem 1. Write down Hamilton’s equations for the following Hamiltonians
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Two masses are hanging via a massless string from a frictionless
pulley, The kinetic energy of the masses is
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while the potential energy is

V = −m1gx1 −m2gx2. (2)

We selected V = 0 at the centre of the pulley. The system is sub-
jected to the constraint x1 + x2 = l = constant. Write down the
Lagrangian, convert to the Hamiltonian and write down Hamil-
ton’s equations.

Problem 3. Show that the following transformation from (q,p) to (Q,P) is canonical
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by checking if the Poisson bracket [Q,P ]q,p = 1. Verify that the following type 3 generating function F3(p,Q)
corresponds to this transformation.
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Problem 4. An idealised kick rotator may be represented by the following discrete map

θn+1/2 = θn + 0.5 ∗K ∗ pn (3)

pn+1 = pn −K sin θn+1/2 (4)

θn+1 = θn+1/2 + 0.5 ∗K ∗ pn+1 (5)

Write a code (e.g. in Python) to iterate this map a few hundred times starting with a set of starting
coordinates (p0, θ0) that cover the range (−π, π) in both phase space coordinates. Plot all the coordinates
after each iteration on a single phase space figure. Repeat for various values of K (K << 1, K ∼ 1 and
K > 1). You should observe bounded motion, chaos, islands of stability, fixed points etc.

Problem 5. The Lie transform for a hard edge quadrupole of length L and strength k can be written
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Show that this transform is equivalent to the transfer matrix M for a quadrupole,
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