Hamiltonian Dynamics Problem Sheet

David Kelliher (David.Kelliher@stfc.ac.uk)

December 1st, 2022

Problem 1. Write down Hamilton's equations for the following Hamiltonians

$$
\begin{array}{r}
H\left(q_{1}, q_{2}, p_{1}, p_{2} ; t\right)=\frac{1}{2}\left(p_{1}^{2}\left(p_{2}^{2}+q_{2}^{2}\right)+q_{1}^{2}\right) \\
H=\frac{1}{2 m}\left(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}+\frac{p_{\phi}^{2}}{r^{2} \sin ^{2} \theta}\right)-\frac{\mu m}{r}
\end{array}
$$

Two masses are hanging via a massless string from a frictionless
 pulley, The kinetic energy of the masses is

$$
\begin{equation*}
T=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}, \tag{1}
\end{equation*}
$$

while the potential energy is

$$
\begin{equation*}
V=-m_{1} g x_{1}-m_{2} g x_{2} . \tag{2}
\end{equation*}
$$

We selected $V=0$ at the centre of the pulley. The system is subjected to the constraint $x_{1}+x_{2}=l=$ constant. Write down the Lagrangian, convert to the Hamiltonian and write down Hamilton's equations.
Problem 3. Show that the following transformation from (q, p) to (Q, P) is canonical

$$
P=2(1+\sqrt{q} \cos p) \sqrt{q} \sin p, Q=\ln (1+\sqrt{q} \cos p)
$$

by checking if the Poisson bracket $[Q, P]_{q, p}=1$. Verify that the following type 3 generating function $F_{3}(p, Q)$ corresponds to this transformation.

$$
F_{3}(p, Q)=-\left(e^{Q}-1\right)^{2} \tan p
$$

Problem 4. An idealised kick rotator may be represented by the following discrete map

$$
\begin{array}{r}
\theta_{n+1 / 2}=\theta_{n}+0.5 * K * p_{n} \\
p_{n+1}=p_{n}-K \sin \theta_{n+1 / 2} \\
\theta_{n+1}=\theta_{n+1 / 2}+0.5 * K * p_{n+1} \tag{5}
\end{array}
$$

Write a code (e.g. in Python) to iterate this map a few hundred times starting with a set of starting coordinates $\left(p_{0}, \theta_{0}\right)$ that cover the range $(-\pi, \pi)$ in both phase space coordinates. Plot all the coordinates after each iteration on a single phase space figure. Repeat for various values of $\mathrm{K}(K \ll 1, K \sim 1$ and $K>1$). You should observe bounded motion, chaos, islands of stability, fixed points etc.

Problem 5. The Lie transform for a hard edge quadrupole of length L and strength k can be written

$$
\begin{equation*}
f=-(L / 2)\left(k x^{2}+p_{x}^{2}\right) \tag{6}
\end{equation*}
$$

Show that this transform is equivalent to the transfer matrix M for a quadrupole,

$$
M=\left(\begin{array}{cc}
\cos \sqrt{k} L & \frac{1}{\sqrt{k}} \sin \sqrt{k} L \\
-\sqrt{k} \sin \sqrt{k} L & \cos \sqrt{k} L
\end{array}\right)
$$

