LHC Status Report

Andrea Calia on behalf of the LHC operations team
Outline

● Highlights from June to September
● Focus:
 ○ Quenches
 ○ UFOs
 ○ Heatload
 ○ Late August incident
● Conclusions & next steps
Highlights from June to September
Highlights: scrubbing

- Beam-induced electron bombardment ("scrubbing") lowers Secondary Emission Yield (SEY)
- ~ 8 days of dedicated scrubbing
 - Machine generally well conditioned
- As beam quality was preserved, further dedicated scrubbing was not needed
 - LHC continued scrubbing during physics fills
- S78 showed good conditioning but still quite high heatload
 - Limitation for cryo cooling capacity

e-cloud impacts significantly the beam quality, heatload and vacuum pressure

L.Mether LMC #444 - 2022 Scrubbing Run Outcome - https://indico.cern.ch/event/1180238/
Highlights: media event

- After ~ 11 weeks of commissioning
- First Stable Beams energy record 13.6 TeV on 5th July
 - Cryo managed to recover just in time from a rather heavy quench in the morning!!
- Very successful event as reported by media service

Many thanks to the media service and experiments for the organization and collaboration in the event!
Highlights: intensity ramp-up

- Intensity ramp-up proceeded smoothly
 - 75b 10/07 \rightarrow ~ 2400b 12/08
 - Limited to 2400b due to heatload limitation in S78 (step 2700b missing)

- Machine protection checklist approved before each step
Highlights: physics production

- Physics production well on track…
 - … before August incident
 - B* levelling on IP1 and IP5
 - Separation levelling on IP2 and IP8

- LHC is flexible about levelling strategies
Focus
Quenches

- Since June we experienced **14 quenches**
 - 13 training quenches + 1 UFO induced quench
- Machine is well trained at 6.8 TeV
 - Training at nominal current + operational margin (100A)
- Profited from the current beam stop to “train” the machine a bit more
 - 5 quenches
 - Likely saved a significant downtime during operation!!
- No indication quenches will be a limiting factor
 - Some quenches are to be expected

A quench involves a quite significant mechanical stress for the affected magnets. The most time consuming activity is the recovery of the nominal cryo conditions. Depending on the number of quenching magnets, a quench event results in 8+ hours recovery.

![RB training quenches graph](image)
Unidentified Falling Objects are particles (mostly dust) that “fall” into the beam causing secondary particle emissions leading to inevitable losses in the machine.
UFOs

- 23 beam dump events so far (1 quench)
 - Predominantly in regions where magnets were exchanged in LS2
- UFOs conditioning is going really well
 - BLM thresholds optimized in the ring
 - Trade-off between quenches and premature dumps
- **Not expected to be a limiting factor**
Heatload

- Heatload in the machine generally conditioned very well during scrubbing

- Heatload of S78 is the current limitation for increasing intensity in the machine
 - Max cryo cooling capacity reached with 2400b and ~1.2e11 ppb
 - Heatload is expected to decrease with time as the machine conditioning improves

- Mitigation scenarios are:
 - 8b4e filling scheme, heatload free but at the cost of lower total intensity
 - Hybrid 8b4e and 25ns filling scheme, compromise between heatload and intensity

- No decision has been officially taken yet

L.Mether LMC #444 - 2022 Scrubbing Run Outcome - https://indico.cern.ch/event/1180238/
23rd August incident

- ~ 18:00 lost communication SF4 cooling water flow PLC
 - Cryo compressor stopped in P4
 - RF cryo went in safe mode → controlled He release
- ~ 22:00 cryo system back online, start of recovery
- Fast response time of all involved teams!

- RF cavities pressure release disks ruptured
 - Cold He release lowered the burst disk rupture threshold
 - Disks replaced during the night by RF and Fire Brigade
 - Warm up to 300K is needed due to contaminated atmosphere in the RF cryo module

- Expected downtime ~4 weeks
23rd August incident: mitigations

- SF4 cooling tower controls
 - PLC consolidations project underway EDMS 2256896
 - Incident cause under investigation with PLC manufacturer
 - Reliability being addressed but is only one mechanism to cause a loss of cryo cooling

- Immediate measures (RF burst disk task force)
 - Safety valves recalibrated to open at a slightly lower pressure
 - He release mechanism modified to ensure that burst disks are not cooled down significantly during He release
 - Should improve margin between safety valve opening and burst disk rupture → lab results showed no cooling of the burst disks

- Longer term solutions being studied by a dedicated task force with the aim of implementation during the YETS
Conclusions & next steps

- All systems commissioned
- Smooth intensity ramp-up
- Physics target for 2022 within reach!
- Very good performance increase
 - Peak lumi close to 2018!!
- Availability ~ 70% (commissioning year)
- Stable Beams time positive trend
 - ~ 34% overall → ~ 41% in August

- Next steps are under careful consideration
 - Present limitation is heatload of S78
 - Significant impact of RF cryomodule issue

- News will be presented in the next days, starting with LMC this afternoon
Conclusions & next steps

- All systems commissioned
- Smooth intensity ramp-up
- Physics target for 2022 within reach!
- Very good performance increase
 - Peak lumi close to 2018!!
- Availability ~ 70% (commissioning year)
- Stable Beams time positive trend
 - ~ 34% overall → ~ 41% in August
- Next steps are under careful consideration
 - Present limitation is heatload of S78
 - Significant impact of RF cryomodule issue
- News will be presented in the next days, starting with LMC this afternoon

Big thanks to all involved teams, injector complex and experiments for the demonstrated flexibility and performance delivery!
Backup
Cryo event on Friday 18th March 2022

- 11h10: Failure of the "PRM card" in the PLC driving the P4 cryo distribution box (QUI)
 - PRM card = Profibus communication card of the PLC
 - Failure of the Profibus network related to this PLC (all QUI valves driven in Profibus)
 - All the QUI valves related to sectors 34 & 45 closed (fail-safe position) ➔ loss of cryo distributions towards S34+45, including RF

- 11h25: RF cavities reached 1.5 bar ➔ degraded mode. Successful helium recovery to QRL/WRL, prevent ODH alarm level 3 (O₂<18%) & evacuations thanks to prompt cryo operator actions.

- 11h35: RF cavities reached 1.8 bar ➔ safety valves start to release helium

- 12h00: remote start/stop of QUI PLC by BE-ICS
 - Profibus network still in error

- 12h24: 24V local reset on the PRM card by TE-CRG by request of BE-ICS
 - Profibus network recovered, all QUI valves were accessible again via the cryo control system
 - Smooth restart to depressurize QRL lines and start the helium recovery by refrigerators

- 13h05: RF safety valves closed below 1.7 bar

- 13h45: replacement of the PRM card by BE-ICS
 - Replacement done by prevention and to perform a post-analysis in the lab

- 14h00: Rupture of the burst disk of RF cryomodule B1 in L4 whereas pressure was stable @ 1.6 bar / 40K
 - Isolation of the 2 RF cryomodules in L4 to avoid air pollution in the rest of the cryo system
 - Cryo lock out of RF cryomodules (TE-CRG) and replacement of the burst disk during the evening (SY-RF)

- 16h: setup of standby 20 K in the 2 x RF cryomodules in R4 at 1.3 bar.

- Sunday at 3h: Cryo conditions recovered in S34 & S45 (except RF)
Normalized heatload 2022