Cosmological Signatures of Dark Photons

Hongwan Liu
NYU & Princeton
Dark Photons

Standard Model Sector

Vector mediator of the dark sector.

Mixing with SM photon generated by UV physics.

Dark Sector

\[\mathcal{L} \supset -\frac{\epsilon}{2} F^{\mu\nu} F_{\mu\nu}^\prime + \frac{1}{2} m_{A'}^2 (A'_\mu)^2 \]

Dark Photons

Simple, renormalizable interaction between two sectors.

Two parameters: **mixing** ϵ and **mass** $m_{A'}$.

\[\mathcal{L} \supset -\frac{\epsilon}{2} F_{\mu \nu} F'_{\mu \nu} + \frac{1}{2} m_{A'}^2 (A'_{\mu})^2 \]
Scenario I: Dark Photon Existence

The existence of the dark photon, with no further assumptions, already leads to cosmological signatures.
Scenario II: Dark Photon Dark Matter

Light dark photons may even be all of dark matter itself: additional and distinct cosmological signatures.
Why Cosmology?
SM charged under **interaction eigenstate** of the photon, which is **not a propagation eigenstate**.
Mixing in Neutrinos

Neutrinos are produced in flavor or interaction eigenstates...
Neutrino Oscillations

... that are not propagation eigenstates.
Light-Shining-Through-Wall

Photons can likewise oscillate into dark photons in vacuum.
DarkSRF
Light-Shining-Through-Wall

There is a characteristic oscillation length of maximum conversion.

\[L \sim \frac{\omega}{m_{A'}^2} \sim 0.8 \text{ m} \left(\frac{10^{-6} \text{ eV}}{m_{A'}} \right)^2 \left(\frac{\nu}{\text{GHz}} \right) \]

\[P_{\gamma \rightarrow A'} = 4\epsilon^2 \sin^2 \left(\frac{m_{A'}^2 L}{4\omega} \right) \]
Lighter Dark Photons

\[L \sim 10^6 m \left(\frac{10^{-9} \text{eV}}{m_{A'}} \right)^2 \left(\frac{\nu}{\text{GHz}} \right) \]

\[P_{\gamma \rightarrow A'} = 4\epsilon^2 \sin^2 \left(\frac{m_{A'}^2 L}{4\omega} \right) \]

Reason #1 for Cosmology: Difficult with terrestrial probes.
Lighter Dark Photons

Reason #2 for Cosmology: *Propagation medium effects* can help.
Photons are massless in vacuum. **Energy gap** between γ and A' lead to **nonresonant oscillations** (like neutrinos).
Photons pick up an effective mass in a plasma.

\[m_\gamma \approx 2 \times 10^{-14} \text{eV} \left(\frac{n_e}{2.5 \times 10^{-7} \text{cm}^{-3}} \right)^{1/2} \]

mean electron number density today

But photons pick up an **effective mass** in a plasma.
Homogeneous Plasma Mass

Under the assumption of homogeneity,
10^{-14} eV $\lesssim \bar{m}_\gamma \lesssim 10^{-9}$ eV after recombination.

$\bar{m}_\gamma \approx 2 \times 10^{-14}$ eV $(n_{e,0} x_e)^{1/2}(1 + z)^{3/2}$

Mirizzi+ 0901.0014, Caputo, HL, Mishra-Sharma & Ruderman 2004.06733
Under the assumption of homogeneity, 10^{-14} eV \(\lesssim \overline{m}_\gamma \lesssim 10^{-9}$ eV after recombination.

$$\overline{m}_\gamma \approx 2 \times 10^{-14} \text{ eV } (n_{e,0} x_e)^{1/2} (1 + z)^{3/2}$$
Resonant Oscillations

\[\dot{H} = \frac{1}{4\omega} \begin{pmatrix} m_\gamma^2 - m_{A'}^2 & 2em_{A'}^2 \\ 2em_{A'}^2 & -m_\gamma^2 + m_{A'}^2 \end{pmatrix} \]

later time, decreasing redshift

\[m_\gamma \gg m_{A'} \]

decreasing \(\overline{n}_e \) and \(\overline{m}_\gamma \)

\(\gamma \)
Resonant Oscillations

\[\hat{A} = \frac{1}{4\omega} \begin{pmatrix} m_\gamma^2 - m_{A'}^2 & 2em_{A'}^2 \\ 2em_{A'}^2 & -m_\gamma^2 + m_{A'}^2 \end{pmatrix} \]

- later time, decreasing redshift
- decreasing \bar{n}_e and \bar{m}_γ

Energy

γ A'
Resonant Oscillations

later time, decreasing redshift

decreasing \bar{n}_e and \bar{m}_γ

\[
\hat{H} = \frac{1}{4\omega} \begin{pmatrix}
 m_\gamma^2 - m_{A'}^2 & 2em_{A'}^2 \\
 2em_{A'}^2 & -m_\gamma^2 + m_{A'}^2
\end{pmatrix}
\]

$m_\gamma \ll m_{A'}$
Resonant Oscillations

- later time, decreasing redshift
- decreasing \bar{n}_e and \bar{m}_γ

$$P_{\gamma \rightarrow A'} = \frac{\pi \epsilon^2 m_{A'}^2}{\omega} \left| \frac{d \ln m_{\gamma}^2}{dt} \right|^{-1}$$

$$m_{\gamma} = m_{A'}$$

Kuo & Pantaleone '89, Mirizzi+ 0901.0014, Caputo, HL, Mishra-Sharma & Ruderman 2004.06733
Resonant Oscillations

Later time, decreasing redshift

\[P_{\gamma \rightarrow A'}^{\text{vac}} \sim 4\epsilon^2 \sin \left(\frac{m_{A'}^2 L}{4\omega} \right) \sim 2 \times \epsilon^2 \times \frac{m_{A'}^2}{2\omega} \times L \]

Decreasing \(n_e \) and \(m_\gamma \)

Mixing

\[P_{\gamma \rightarrow A'} = 2\pi \times \epsilon^2 \times \frac{m_{A'}^2}{2\omega} \times \left| \frac{d \ln m_\gamma^2}{dt} \right|^{-1} \]

\(m_\gamma = m_{A'} \)

(\(\gamma \rightarrow A' \) vacuum oscillation length\(^{-1}\))

Resonance timescale

\(\sim H^{-1} \)
Takeaways

1. Cosmological scales good for long oscillation length.

2. There are nonresonant (vacuum) vs. resonant oscillations.
Resonant Oscillations in the Real Universe
The CMB is very close to a perfect blackbody.

Spectral distortions due to disappearing photons are highly constrained.

\[P_{\gamma \rightarrow A'} = \sum_i \frac{\pi c^2 m_{A'}^2}{\omega} \left| \frac{d \ln m_{\gamma}^2}{dt} \right|^{-1} \bigg|_{t_i=t_{res}} \]
Resonant Oscillations

\[P_{\gamma \rightarrow A'} = \sum_i \frac{\pi e^2 m_{A'}^2}{\omega} \left| \frac{d \ln m_{\gamma}^2}{dt} \right|^{-1} \bigg|_{t_i = t_{\text{res}}} \]

Resonant oscillations when

\[m_{\gamma} = m_{A'}. \]

Conversions after recombination covers

\[10^{-14} \, \text{eV} \lesssim m_{A'} \lesssim 10^{-9} \, \text{eV}. \]
Inhomogeneities

Fluctuations in electron density means $m_\gamma \neq \overline{m}_\gamma$.
Numerous resonance crossings along each photon path...
Analytic Formalism

... but we can average over photon paths analytically!
Analytic Formalism

\[P_{\gamma \rightarrow A'} = \sum_i \frac{\pi \varepsilon^2 m_{A'}^2}{\omega} \left| \frac{d \ln m_\gamma^2}{dt} \right|^{-1} \bigg|_{t_i = t_{\text{res}}} = \int dt \frac{\pi \varepsilon^2 m_{A'}^2}{\omega(t)} \delta_D(m_\gamma^2 - m_{A'}^2) \frac{m_\gamma^2}{m_\gamma} \]

Change of integration measure
Analytic Formalism

\[P_{\gamma \rightarrow A'} = \int dt \frac{\pi \epsilon^2 m_{A'}^2}{\omega(t)} \delta_D(m_{\gamma}^2 - m_{A'}^2) m_{\gamma}^2 \]

Average over distribution of \(m_{\gamma}^2 \)

\[\langle P_{\gamma \rightarrow A'} \rangle = \int dt \int dm_{\gamma}^2 f(m_{\gamma}^2; t) \frac{\pi \epsilon^2 m_{A'}^2}{\omega(t)} \delta_D(m_{\gamma}^2 - m_{A'}^2) m_{\gamma}^2 \]

(time-dependent) probability density function of \(m_{\gamma}^2 \)
Analytic Formalism

\[\langle P_{\gamma \rightarrow A'} \rangle = \int dt \int dm_{\gamma}^{2} f(m_{\gamma}^{2}; t) \frac{\pi \varepsilon^{2} m_{A'}^{2}}{\omega(t)} \delta_{D}(m_{\gamma}^{2} - m_{A'}^{2}) m_{\gamma}^{2} \]

Integrate over \(m_{\gamma}^{2} \)

\[\langle P_{\gamma \rightarrow A'} \rangle = \int dt f(m_{\gamma}^{2} = m_{A'}^{2}; t) \frac{\pi \varepsilon^{2} m_{A'}^{4}}{\omega(t)} \]

Finding the average conversion probability reduces to knowing the PDF of the plasma mass squared.
One-Point PDF

\[m_\gamma \simeq 2 \times 10^{-14} \text{eV} \left(\frac{n_e}{2.5 \times 10^{-7} \text{cm}^{-3}} \right)^{1/2} \left(\frac{x_e}{1.0} \right)^{1/2} \]

\[m_\gamma^2 \propto n_e \implies f(m_\gamma^2; t) \propto \mathcal{P}(\delta_b; t) \]

\[\delta_b \equiv \frac{\rho_b - \bar{\rho}_b}{\bar{\rho}_b} \]

\[m_\gamma^2 \text{ fluctuations directly related to baryon density fluctuations, a well-defined cosmological parameter.} \]
Linear Regime

\[\delta_b = \frac{\rho_b - \overline{\rho}_b}{\overline{\rho}_b} \]

When \(z \gg 20 \), fluctuations are \textbf{small} and \textbf{Gaussian}, characterized fully by the \textbf{variance}, \(\sigma_b^2 \).

\[\mathcal{P}(\delta_b; z) = \frac{1}{\sqrt{2\pi\sigma_b^2(z)}} \exp\left(-\frac{\delta_b^2}{2\sigma_b^2(z)}\right) \]
Analytic vs. Simulation

Gaussian simulation

Simulation vs. analytic probability

$k_{\text{max}} = 20 \ h \text{Mpc}^{-1}$

$r_{\text{filt}} = 2.5 \text{Mpc} \ h^{-1}$
PDF in the Nonlinear Regime

Phenomenological: variance from baryonic simulations.

Theoretically motivated, but DM only.

Ivanov, Kaurov & Sibiryakov 1811.07913

From simulations of voids: useful for underdensities

Adermann, Elahi, Lewis & Power 1703.04885, 1807.02938

Good agreement between fiducial for

\[10^{-2} \leq 1 + \delta_b \leq 10^2. \]
Constraints on Dark Photons Existing
Cosmic Microwave Background

The CMB is very close to a perfect blackbody.

Spectral distortions due to disappearing photons are highly constrained.

\[P_{\gamma \rightarrow A'} = \sum_i \frac{\pi c^2 m_{A'}^2}{\omega} \left| \frac{d \ln m_{A'}^2}{dt} \right|^{-1} \bigg|_{t_i=t_{res}} \]
Constraints with Inhomogeneities

conversions in underdensities at low redshifts

weakening as conversion probability pushed into future

inhomogeneities unimportant

conversions in overdensities at reionization

COBE/FIRAS \(\gamma \rightarrow A' \)

- Homogeneous
- Log-normal PDF
- Analytic PDF

Limits:
- Jupiter: \(10^{-2} < 1 + \delta < 10^2 \)
- PIXIE (projection)
- Dark SRF (projection)

References:
- Caputo, HL, Mishra-Sharma & Ruderman, 2002.05165, also García+ 2003.10465
Before Recombination

Density fluctuations not important: universe is smooth.

Existing literature inconsistent and likely incorrect, but small difference.
Two-Point Statistics?

Simple estimate:

\[\langle \delta T^2_{\gamma \rightarrow A'} \rangle \sim (10^{-5} T_0)^2 \]

But what about angular dependence?

Two-point correlations with other observables?
Dark photons can be probed by cosmology.

Easy to include inhomogeneities!
Oscillation into Photons

Oscillations convert A' dark matter to low frequency photons which are rapidly absorbed.

$$\nu = 2.5 \text{ Hz} \left(\frac{m_{A'}}{10^{-14} \text{ eV}} \right) \quad \lambda_{\text{mfp}} = \frac{140 \, \text{pc}}{(1 + z)^6} \Delta_b^{-2} \left(\frac{T}{10^4 \, \text{K}} \right)^{3/2} \left(\frac{m_{A'}}{10^{-14} \, \text{eV}} \right)^2$$
Galactic Heating

Nonresonant oscillations convert A' dark matter to low frequency photons which are rapidly absorbed.

Compare heating rate with cooling rate in interstellar medium/dwarf galaxy gas.
Dark matter $A' \rightarrow \gamma$ resonant conversions produce low-energy photons that heat the IGM.

Must include inhomogeneities.

Constraints can be roughly set by requiring $T_{\text{IGM}} \lesssim 10^4$ K for consistency with $2 \lesssim z \lesssim 5$ Lyα forest.
Low-Redshift Lyα Discrepancy

IGM simulations find Lyα Doppler widths that are **too narrow** at low redshifts compared to observations.
Low-Redshift Lyα Discrepancy

Cannot be explained by increased feedback, or steeper ionizing radiation spectrum.
Low-Redshift Lyα Discrepancy

Requires $u = 6.9$ eV per baryon of energy for $z \lesssim 2$, with density dependence $u \propto \Delta^{0.6}$. Possibly: turbulence, dust.
Dark Photon Dark Matter Heating

\[P_{A'\to \gamma} = \pi \epsilon^2 m_{A'} \left| \frac{d \ln m_{\gamma}}{dt} \right|^{-1} \]

Dark matter \(A' \to \gamma \) conversions can give anomalous heating.

\[m_{A'} \lesssim 8 \times 10^{-14} \text{ eV} \] to be consistent with \(\text{Ly} \alpha \) forest at \(2 \lesssim z \lesssim 5 \).

\[u \propto \Delta^{1/2} \] due to photon plasma mass evolution.
Significantly better agreement with HST/COS Doppler widths.
Future Work

Predicts **inverted temperature-density relation** at $z \sim 3$, for which we have mild evidence for (Rorai+).

Use these simulations to set **robust limits on A' DM**, improving on current estimates.

Stay tuned!