Cosmological Constraints on Light (but Massive) Relics

New Physics from Galaxy Clustering, 2022

W. Linda Xu UC Berkeley, LBNL

V + CDN (mostly) Cold (mostly) Darw (mostly) Matter

Cold (?) V + CDM ~ Darb (?) Matter + Dark Radiation? + (Very) Fuzzy DM? + millichage, 310m/ I dorbly chazed ... ?

t massive light zetics? + ...

- 1) What
- 2 Why
- 3 How

6/27

- 1 What
- 2 Why
- 3) How

Particles that were thermalized with SM in early universe, were relativistic at decoupling, but potentially non-relativistic today.

8/27

Particles that were thermalized with SM in early universe, were relativistic at decoupling, but potentially non-relativistic today.

Two categories:

Not Neutrinos

Particles that were thermalized with SM in early universe, were relativistic at decoupling, but potentially non-relativistic today.

Two categories:

Last piece of the SM

Massive, but unresolved

Not Neutrinos

Neutrinos

8/27

Particles that were thermalized with SM in early universe, were relativistic at decoupling, but potentially non-relativistic today.

Neutrinos

► Last piece of the SM

Massive, but unresolved

Not Neutrinos

▶ New particles!

▶ Ubiquitous in SM extensions

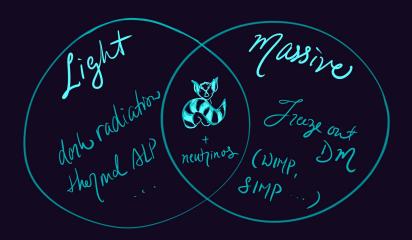
Two categories:

8/27

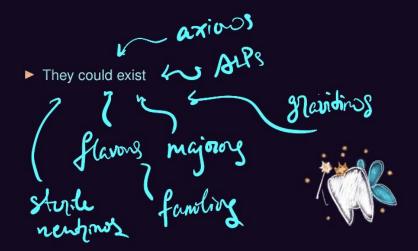
Particles that were thermalized with SM in early universe, were relativistic at decoupling, but potentially non-relativistic today.

Neutrinos

▶ Last piece of the SM

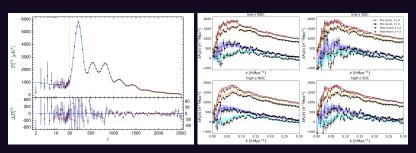

Massive, but unresolved

Not Neutrinos (LiMRs)


- ▶ New particles!
- ▶ Ubiquitous in SM extensions

Two categories:

Light (but Massive) Relics (LiMRs)



- 1) What
- 2 Why
 - 3) How

- ► They do exist
- ► We could find them (soon!)

[Planck collaboration 1807.06209; Philcox, Ivanov, Simonović, Zaldarriaga 2002.04035]

[Drinking game: take a shot every time you hear "precision era of cosmology" in a talk]

- ► They do exist
- ► We could find them (soon!)
- ► We might be the only ones who can (for a while)

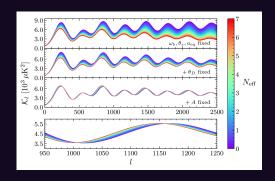
D What

2 Why

3 How

- ▶ Mass m_X
- (present-day) Temperature $T_X^{(0)}$
- ightharpoonup Thermalized dofs g_X

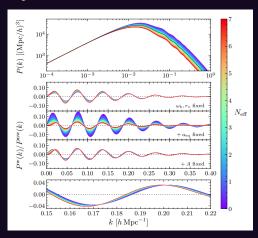
- ► ≤ eV scale masses
- ➤ ~ 1K temperatures
- % fractions of observed DM abundance
- extremely feeble interactions
- stable, non self-interacting, high reheat temp...



$$\rho_r = \rho_{\gamma} + \rho_{\nu} + \rho_{LR} \equiv \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right)$$
$$\Delta N_{\text{eff}} \equiv N_{\text{eff}} - 3.044 = \frac{4}{7} g_X \left(\frac{T_X^{(0)}}{T_{\nu}^{(0)}} \right)^4$$

Adding radiation leads to observable cosmological signatures

LiMRs in the early universe


- Damps small-scale fluctuations
- Shifts scales of acoustic oscillations

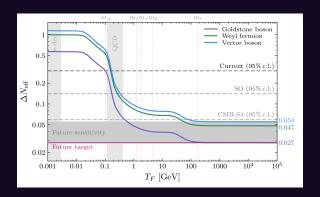
[Baumann, Green & Wallisch, 1712.08067]

LiMRs in the early universe

- Damps small-scale fluctuations
- Shifts scales of acoustic oscillations

[Baumann, Green & Wallisch, 1712.08067]

Planck 18 + BAO
$$\Delta N_{
m eff} \leq 0.28$$
 [95% CL] $\Longrightarrow T_{
m Weyl}^0 \leq 1.4$ K CMB-S4 $\Delta N_{
m eff} \leq 0.06$ [95% CL] $\Longrightarrow T_{
m Weyl}^0 \leq 0.96$ K


13/27

Planck 18 + BAO
$$\Delta N_{
m eff} \leq 0.28$$
 [95% CL] $\Longrightarrow T_{
m Weyl}^0 \leq 1.4$ K CMB-S4 $\Delta N_{
m eff} \leq 0.06$ [95% CL] $\Longrightarrow T_{
m Weyl}^0 \leq 0.96$ K

Conservation of entropy
$$\implies T_X^{(0)} = \left(\frac{s^{(0)}}{g_{*S}^{\mathrm{dec}}}\right)^{1/3}$$

$$g_{*S}^{\rm SM} \leq 106.75 \implies {\rm Minimal~SM~extensions~} T_X^{(0)} \geq 0.91~{\rm K}$$

$$\begin{array}{ll} \text{Planck 18 + BAO} & \Delta N_{\text{eff}} \leq 0.28 \implies T_{\text{Weyl}}^{\text{dec}} \lesssim 100 \; \text{MeV} \\ \text{CMB-S4} & \Delta N_{\text{eff}} \leq 0.06 \implies T_{\text{Wevl}}^{\text{dec}} \lesssim 100 \; \text{GeV} \; (!!) \end{array}$$

[Dvorkin, Meyers ... WLX ... et. al; Snowmass study 2203.07943]

At $z_{\rm NR} \sim m_X/T_X^{(0)}$, LiMRs transition from radiation to matter ...

$$\rho_X = m_X n_X \qquad \Omega_X h^2 \approx \frac{g_X}{g_\nu} \frac{m_X}{93.14 \text{ eV}} \left(\frac{T_X^{(0)}}{1.95 \text{ K}} \right)^3$$

... but still have significant thermal velocity

Significant $v_{
m th} \implies$ free-streaming at a characteristic scale

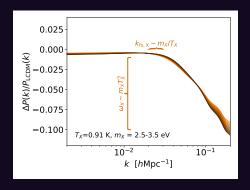
$$\begin{split} k_{\rm fs}(z) &\sim \frac{H(z)}{v_{\rm th}(z)} = \sqrt{\frac{4\pi G \rho(z)}{v_{\rm th}^2(z)(1+z)^2}} \\ &\approx \frac{0.1h~{\rm Mpc}^{-1}}{\sqrt{1+z}} \Omega_m^{1/2} \left(\frac{m_X}{0.1~{\rm eV}}\right) \left(\frac{T_X^{(0)}}{1.95~{\rm K}}\right)^{-1} \text{[matter dom]} \end{split}$$

Significant $v_{
m th} \implies$ free-streaming at a characteristic scale

$$\begin{split} k_{\rm fs}(z) &\sim \frac{H(z)}{v_{\rm th}(z)} = \sqrt{\frac{4\pi G \rho(z)}{v_{\rm th}^2(z)(1+z)^2}} \\ &\approx \frac{0.1h~{\rm Mpc}^{-1}}{\sqrt{1+z}} \Omega_m^{1/2} \left(\frac{m_X}{0.1~{\rm eV}}\right) \left(\frac{T_X^{(0)}}{1.95~{\rm K}}\right)^{-1} \text{[matter dom]} \end{split}$$

There is a minimum free-streaming mode, $k_{
m fs} \left({\sf min}[z_{
m NR}, z_{eq}]
ight)$

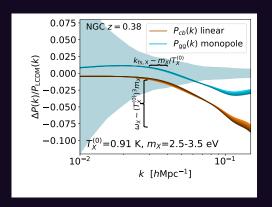
$$k_{\rm fs}(z) \lesssim \begin{cases} 10^{-3} h \; {\rm Mpc^{-1}} \left(\frac{m_X}{0.1 \; {\rm eV}}\right) \left(\frac{T_X^{(0)}}{1.95 \; {\rm K}}\right)^{-1} & z_{\rm NR} > z_{eq} \\ \\ 3 \times 10^{-3} h \; {\rm Mpc^{-1}} \left(\frac{m_X}{0.1 \; {\rm eV}}\right)^{1/2} \left(\frac{T_X^{(0)}}{1.95 \; {\rm K}}\right)^{-1/2} & z_{\rm NR} < z_{eq} \end{cases}$$


Significant $v_{
m th} \implies$ free-streaming at a characteristic scale

$$\begin{split} k_{\rm fs}(z) &\sim \frac{H(z)}{v_{\rm th}(z)} = \sqrt{\frac{4\pi G \rho(z)}{v_{\rm th}^2(z)(1+z)^2}} \\ &\approx \frac{0.1h~{\rm Mpc}^{-1}}{\sqrt{1+z}} \Omega_m^{1/2} \left(\frac{m_X}{0.1~{\rm eV}}\right) \left(\frac{T_X^{(0)}}{1.95~{\rm K}}\right)^{-1} \text{[matter dom]} \end{split}$$

Adding free-streaming matter leads to observable cosmological signatures

LiMRs in the late universe


- free-stream at small scales
- backreact on the metric
- suppress growth of structure

[WLX, Műnoz, Dvorkin 2107.09664]

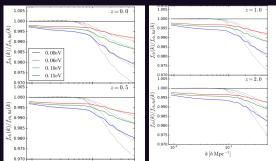
Observable = clustering statistics of biased tracers

$$\delta_g \equiv b_1 \delta_{cb} + b_2 \delta_{cb}^2 + b_{\mathcal{G}_2} \mathcal{G}_2 \qquad \delta_{cb} = (1 - f_{\nu} - f_X) \delta_m$$

[Chudaykin, Ivanov, Philcox, Simonović, 2004.10607; WLX et al 2107.09664]

This formalism neglects the nonlinear clustering of light relics

 Neutrinos and LiMRs induce scale-dependent growth



The matter story

This formalism neglects the nonlinear clustering of light relics

 Simulations show this is probably ok for neutrinos

[Villaescusa-Navarro et al 1708.01154]

The matter story

This formalism neglects the nonlinear clustering of light relics

- Neutrinos and LiMRs induce scale-dependent growth
- Simulations show this is probably ok for neutrinos
- ...but might be a problem for heavier relics
- tricky to incorporate into theory, no exact sims to map to

$$N_{\text{eff}} \propto g_X(T_X^0)^4 \quad k_{fs,X} \propto m_X/T_X^{(0)} \quad \omega_X \propto g_X m_X(T_X^{(0)})^3$$

15/27

$$N_{\rm eff} \propto g_X(T_X^0)^4 \quad k_{fs,X} \propto m_X/T_X^{(0)} \quad \omega_X \propto g_X m_X(T_X^{(0)})^3$$

$$\omega_X \propto N_{\rm eff} k_{fs,X}$$

 \Longrightarrow 1 axis of degeneracy within $\{g_X, m_X, T_X^{(0)}\}$

$$N_{
m eff} \propto g_X(T_X^0)^4 \quad k_{fs,X} \propto m_X/T_X^{(0)} \quad \omega_X \propto g_X m_X (T_X^{(0)})^3$$
 \Longrightarrow 1 axis of degeneracy within $\{g_X,m_X,T_X^{(0)}\}$

Cast to equivalent "neutrinos" $\{m_X, T_X^{(0)}, g_X\} \to \{m_{\rm eq}, T_{\rm eq}^{(0)}, 2\}$

$$m_{\text{eq}} = m_X \left(\frac{g_X}{2}\right)^{1/4} c_1^{\gamma/4} c_2^{\gamma} \qquad T_{\text{eq}}^{(0)} = T_X^{(0)} \left(\frac{g_X}{2}\right)^{1/4} c_1^{\gamma/4}$$

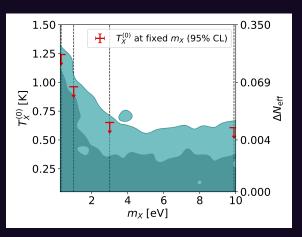
$$c_1=8/7, \quad c_2=7/6, \quad \gamma= \begin{cases} 0 & \text{fermion} \\ 1 & \text{boson} \end{cases}$$

$$N_{
m eff} \propto g_X(T_X^0)^4 \quad k_{fs,X} \propto m_X/T_X^{(0)} \quad \omega_X \propto g_X m_X (T_X^{(0)})^3$$
 \Longrightarrow 1 axis of degeneracy within $\{g_X,m_X,T_X^{(0)}\}$

- ► Easier to search the space
- ► Harder to interpret detections

15/27

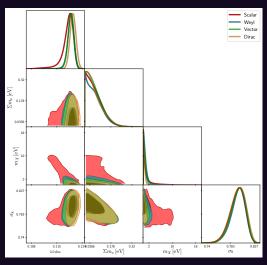
Hunting for LiMRs


We've got some pretty impressive data now

Have we found anything?

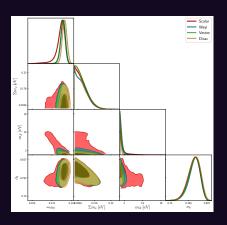
Hunting for LiMRs

No(t yet), but...



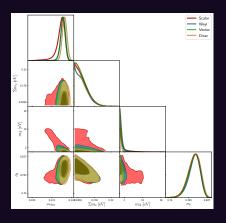
[WLX, Műnoz, Dvorkin 2107.09664]

Hunting for LiMRs


 $T_X = 0.91 \text{ K}$

m _X (95% CL)		
Scalar	11.2 eV	
Weyl	2.26 eV	
Vector	1.58 eV	
Dirac	1.06 eV	

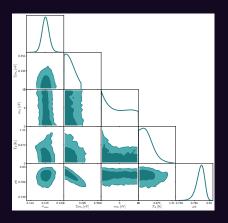
[WLX, Műnoz, Dvorkin 2107.09664]


Another caveat

[not pictured]: Λ CDM

[WLX, Műnoz, Dvorkin 2107.09664]

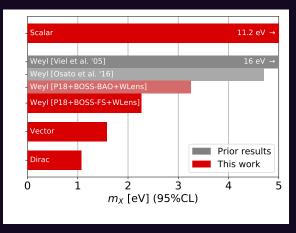
Another caveat


$$\Delta N_{\rm eff}^{\rm max} \sim 0.09 < \sigma_{\Delta N_{\rm eff}}^{\rm P18+BAO}$$

- close enough for now
- but not for long

[WLX, Műnoz, Dvorkin 2107.09664]

17/27


Another caveat

[pictured]: too much Λ CDM

[WLX, Műnoz, Dvorkin 2107.09664]

Where we're at ...

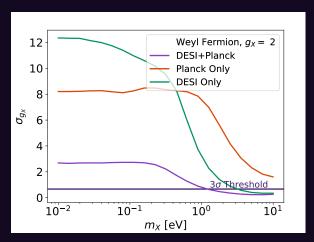
[WLX, Műnoz, Dvorkin 2107.09664]

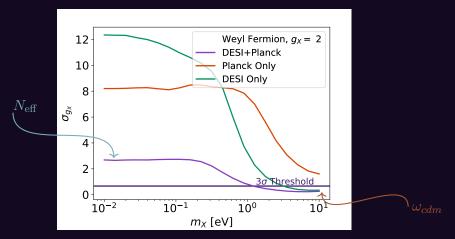
... and what we can learn from it

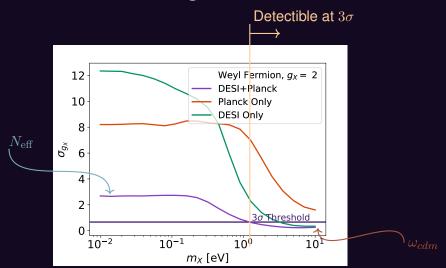
Light gravitinos in gauge-mediated SUSY breaking

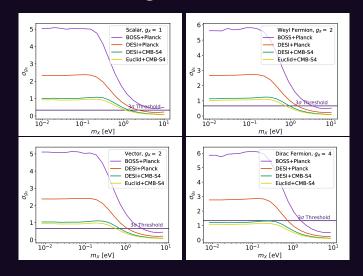
$$\begin{split} m_{3/2} &= \frac{\langle F \rangle}{\sqrt{3} M_{pl}}, \quad T_{3/2} \approx 0.95 \text{ K}, \quad g_{3/2,\text{eff}} = 2 \\ m_{3/2} &\leq 1.91 \text{ eV} \implies \sqrt{\langle F \rangle} \leq 63.5 \text{ TeV} \end{split}$$

19/27


Better data coming soon!




-Markov Chain Monte Carlo → Fisher Forecasts


[Deporzio, WLX, Mũnoz, Dvorkin 2006.09380, Minimal temperature $T_X=0.91~\mathrm{K}$]

[Deporzio, WLX, Műnoz, Dvorkin 2006.09380, Minimal temperature $T_X=0.91~\mathrm{K}$]

[Deporzio, WLX, Műnoz, Dvorkin 2006.09380, Minimal temperature $T_X=0.91~\mathrm{K}$]

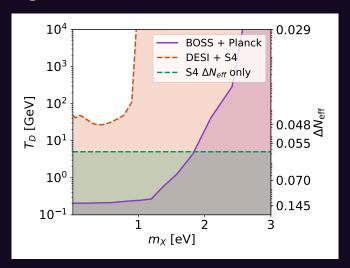
[Deporzio, WLX, Műnoz, Dvorkin 2006.09380]

A quick sanity check

$$T_X=0.91~\mathrm{K}$$

m _X (95% CL)			
Constraints	Forecast		
11.2 eV	9.6 eV		
2.26 eV	1.90 eV		
1.58 eV	1.37 eV		
1.06 eV	0.86 eV		
	Constraints 11.2 eV 2.26 eV 1.58 eV		

$$T_X = 0.91 \; {\rm K}$$


m _X (99% CL)			
	DESI + Planck	DESI + CMB-S4	
Scalar	1.96 eV	1.14 eV	
Weyl	1.20 eV	0.78 eV	
Vector	0.90 eV	0.58 eV	
Dirac	0.61 eV	All masses	

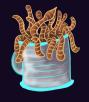
 $T_X = 0.91 \text{ K}$

m _X (99% CL)			
	DESI + Planck	DESI + CMB-S4	
Scalar	1.96 eV	1.14 eV	
Weyl	1.20 eV	0.78 eV	
Vector	0.90 eV	0.58 eV	
Dirac	0.61 eV	All masses	

Also: 3σ discovery potential for GMSB gravitinos at $m_{3/2} \geq 0.77$ eV or $\sqrt{F} \geq 40$ TeV 2σ at *all* masses

Exciting times ahead?

[Deporzio, WLX, Műnoz, Dvorkin 2006.09380]



Generalize the framework

- annihilations? decays? self-interactions?
- map out places where we gain/lose sensitivity in the space

Solidifying these theory predictions

- Self-consistent incorporation of relics into the PT
- Modeling LiMR nonlinear clustering with simulations

Developing a follow-up plan in case of detection

- ► A good set of benchmark models and places to look next
- Ways to disentangle various degenerate scenarios (equivalent relics, multiple relics ...)
- What does a smoking-gun particle discovery in cosmology look like?

Landing points

Dark sectors are worth studying, in whole or in part

- Compelling reasons to care about LiMRs
- Cosmology very much corners this market
- ► The first set of comprehensive constraints
 - + better things to come

Thank you!

[Estella Lin, 2021]