Towards Constraining Dark Sectors with 21-cm Cosmology

A detailed analysis of the global 21-cm signal in dark cooling scenarios

Omer Zvi Katz

Tel Aviv University

Nov. 2022

Nadav Joseph Outmezguine, Diego Redigolo, Tomer Volansky

Plan

- Basics of 21-cm Cosmology
- Dark Cooling Valid Models
- Predictions

- After $(z \sim 1100)$ neutral Hydrogen is the most abundant component of the baryonic matter.
- Most hydrogen is at its 1s ground state
- The hyperfine splitting of the ground state corresponds to 21-cm $(6 \times 10^{-6} eV)$

• CMB photons transverse through dense Hydrogen clouds before reaching us

- CMB photons transverse through dense Hydrogen clouds before reaching us
- Photons at the black body tail interact with the hyperfine levels of Hydrogen

SARAS 3 Antenna

- CMB photons transverse through dense Hydrogen clouds before reaching us
- Photons at the black body tail interact with the hyperfine levels of Hydrogen
- The measured intensity at 21(1+z)cm depends on the relative occupancy of the Hyperfine levels at redshift z

- CMB photons transverse through dense Hydrogen clouds before reaching us
- Photons at the black body tail interact with the hyperfine levels of Hydrogen
- The measured intensity at 21(1+z)cm depends on the relative occupancy of the Hyperfine levels at redshift z

• The signal is determined by the hyperfine occupancy ratio

- The signal is determined by the hyperfine occupancy ratio
- Once formed, stars emit $Ly\alpha$ photons
- $Ly\alpha$ photons cause spin flips (W.F.) relating between T_{21} and T_K

- The signal is determined by the hyperfine occupancy ratio
- Once formed, stars emit $Ly\alpha$ photons
- $Ly\alpha$ photons cause spin flips (W.F.) relating between T_{21} and T_K

Absorption signal at cosmic dawn

Dark Cooling – Enhanced Absorption

Elastic DM-SM interactions cool the baryonic gas

Dark Cooling – Enhanced Absorption

Elastic DM-SM interactions cool the baryonic gas

Enhanced absorption at cosmic dawn

Dark Cooling – Enhanced Absorption

Elastic DM-SM interactions cool the baryonic gas

Impact on 21-cm

Enhanced absorption at cosmic dawn

Anomalous absorption signal

Constrain over cooling?

- mDM is the only viable model that can lead to an O(1) cooling at cosmic dawn
- CMB constraints imply $f_m < 0.4\%$

[K. K. Boddy et al, 2018]

- mDM is the only viable model that can lead to an O(1) cooling at cosmic dawn
- CMB constraints imply $f_m < 0.4\%$

- mDM is the only viable model that can lead to an O(1) cooling at cosmic dawn
- CMB constraints imply $f_m < 0.4\%$

- mDM is the only viable model that can lead to an O(1) cooling at cosmic dawn
- CMB constraints imply $f_m < 0.4\%$

- $g_m g_C = 0$ is arbitrary
- General scenario allows $g_m g_C \neq 0$

- $g_m g_C = 0$ is arbitrary
- General scenario allows $g_m g_C \neq 0$
- mDM-CDM interactions effectively increase the heat capacity of mDM

- $g_m g_C = 0$ is arbitrary
- General scenario allows $g_m g_C \neq 0$
- mDM-CDM interactions effectively increase the heat capacity of mDM

How Much Can we Cool?

How Much Can we Cool?

Park et al. 2019

$$\min\{T_{21}^{SM}\} = -80mK$$

How Much Can we Cool?

 $\min\{T_{21}^{SM}\} = -120mK$

 $\min\{T_{21}^{SM}\} = -80mK$

Summary

- T_{21} is strongly related to T_K at cosmic dawn
- DM-SM elastic interactions cool the baryons, therefore enhancing the absorption signal
- mDM is the only viable DM model that can generate and O(1) cooling
- mDM can generally also interact with CDM
- Current measurements can lead to strong constraints from overcooling

Backup

Astrophysical Modeling

Astrophysical Modeling

[Munouz et al. 2022]

Astrophysical Parameters

Pumped X-rays

Worst Case Scenario

no mDM - CDM Interactions

21-cm Basics

• Define the spin temperature

$$\frac{n_1}{n_0} = 3e^{-\frac{E_{21}}{T_S}}$$

• Differential brightness temperature

$$T_{21} \propto T_{\rm S}(z) - T_{\gamma}(z)$$

• Define the spin temperature

$$\frac{n_1}{n_0} = 3e^{-\frac{E_{21}}{T_S}}$$

• Differential brightness temperature

$$T_{21} \propto T_s(z) - T_{\gamma}(z)$$

• Define the spin temperature

$$\frac{n_1}{n_0} = 3e^{-\frac{E_{21}}{T_S}}$$

• Differential brightness temperature

$$T_{21} \propto T_s(z) - T_{\gamma}(z)$$

$$T_S = T_{\gamma} \Rightarrow null \ signal$$

• Define the spin temperature

$$\frac{n_1}{n_0} = 3e^{-\frac{E_{21}}{T_S}}$$

• Differential brightness temperature

$$T_{21} \propto T_s(z) - T_{\gamma}(z)$$

$T_s < T_{\gamma} \Rightarrow absorption$

• Define the spin temperature

$$\frac{n_1}{n_0} = 3e^{-\frac{E_{21}}{T_S}}$$

• Differential brightness temperature

$$T_{21} \propto T_s(z) - T_{\gamma}(z)$$

$T_s > T_{\nu} \Rightarrow emission$ plot

W.F. Coupling

- $Ly\alpha$ photons emitted by the first luminous cause spin flips (W.F.)
- Energy transfer by recoil couple T_s and T_K

2*P*

Counter Dark Cooling Effects

Dark Cooling Suppression

Heating effects counter cooling

 $Ly\alpha$ photons couple $T_S \to T_C^{eff} \to T_K$

Dark Cooling Suppression

Inefficient $Ly\alpha$ Coupling

Photons around line center lose energy due to recoil with H

Inefficient $Ly\alpha$ coupling

$$x_{\alpha} = \frac{8\pi\lambda_{Ly\alpha}^2 \gamma T_{\star}}{9A_{10}T_{\gamma}} S_{\alpha} J_{\alpha}$$

Dark Cooling Suppression Inefficient *Lyα* Coupling

- Eventually enough $Ly\alpha$ photons are emitted
- Heating effects ⇒ moderate temperatures

Dark Cooling Suppression Heating

$$\frac{dT_K}{dlog(a)} = -2T_K + \frac{1}{H} \left(\dot{Q}_{Dark\ Cooling} + \dot{Q}_{Comp} + \dot{Q}_{Xrays} + \dot{Q}_{CMB} + \dot{Q}_{Ly\alpha} \right)$$

Enhanced at low T_K

[Venumadhav et al. 2018, Chen & Miralda 2003]

Dark cooling – Standard scenario

Long range interactions
$$m_{\phi} < \mu_{I} v_{rel} \approx 1 KeV \frac{\mu_{I}}{1 GeV}$$

 $m_{\phi} < 1/r_{Bohr}$

Screened or unscreened?

Interactions do not probe the constituents of atoms

- Hidden photon
- Millicharged DM
- Yukawa coupling scalar mediator
- B-L coupling scalar or vector mediator

Dark cooling – Standard scenario

[Barkana, Outmezguine, Redigolo, Volansky, 2018]

Cooling is dominated by the small ionized fraction

Dark cooling – Standard scenario

The mediator must be either the SM's photon or a Hidden photon.

SM photon – millicharged DM

$$\frac{d\sigma}{d\Omega} = \frac{\bar{\sigma}}{4\pi} |F(q^2)|^2 = \frac{\bar{\sigma}}{4\pi} |f_{DM}(q^2)|^2 |f_{SM}(q^2)|^2$$

Hidden photon

Measurements

• EDGES collaboration – anomalous absorption at cosmic dawn