Decaying Dark Matter and Lyman- α forest constraints

Lea Fuß, Mathias Garny arXiv:2210.06117

November 21, 2022

New Physics from Galaxy Clustering (CERN 2022)

Decaying Dark Matter Model

potential problems with $\Lambda C D M$:

- Hubble tension
- S_{8} tension

DM model that generates suppression on small scales
\rightarrow Decaying Cold Dark Matter (DCDM)
$\mathrm{CDM} \rightarrow \mathrm{WDM}+\mathrm{DR}$

2 parameters: lifetime τ, mass splitting $\epsilon=\frac{1}{2}\left(1-\frac{m^{2}}{M^{2}}\right)$

$$
\begin{aligned}
\dot{\bar{\rho}}_{\mathrm{dcdm}}= & -3 \mathcal{H} \bar{\rho}_{\mathrm{dcdm}}-a \Gamma \bar{\rho}_{\mathrm{dcdm}} \\
\dot{\bar{\rho}}_{\mathrm{wdm}}= & -3(1+\omega) \mathcal{H} \bar{\rho}_{\mathrm{wdm}} \\
& +(1-\epsilon) a \Gamma \bar{\rho}_{\mathrm{dcdm}} \\
\dot{\bar{\rho}}_{\mathrm{dr}}= & -4 \mathcal{H} \bar{\rho}_{\mathrm{dr}}+\epsilon a \Gamma \bar{\rho}_{\mathrm{dcdm}}
\end{aligned}
$$

Effects on the Power Spectrum

- computed with modified CLASS code from [Abellan et al, 2021, arXiv:2102.12498]

- ϵ controls onset and τ steepness of suppression
- orange region refers to weakly non-linear BOSS region

Effective Lyman- α model

- $\delta_{F}(\delta, \theta)=\frac{F}{\bar{F}}-1$
- effective and perturbative model applicable to BOSS scales
- consider Jeans-scale k_{F}, broadening effects k_{s}, SiIII absorption $\kappa_{\text {SiIII }}$ and integrate over line of sight $k_{\|}$

$$
\begin{aligned}
P_{F, 1 D}\left(k_{\|}, z\right)= & A(z) \cdot \kappa_{\mathrm{SiIII}}\left(k_{\|}, z\right) \cdot e^{-\left(k_{\|} / k_{s}\right)} \\
& \left(I_{0}+I_{c t}(z)+2 \beta(z) I_{2}+\beta(z)^{2} I_{4}\right)
\end{aligned}
$$

$$
I_{0}\left(k_{\|}, z\right)=\int_{k_{\|}} \mathrm{d} k k \cdot e^{-\left(k / k_{F}\right)^{2}} P_{\delta \delta}(k, z)
$$

$$
I_{2}\left(k_{\|}, z\right)=\int_{k_{\|}} \mathrm{d} k \frac{k_{\|}^{2}}{k} \cdot e^{-\left(k / k_{F}\right)^{2}} P_{\delta \theta}(k, z)
$$

$$
I_{4}\left(k_{\|}, z\right)=\int_{k_{\|}} \mathrm{d} k \frac{k_{\|}^{4}}{k^{3}} \cdot e^{-\left(k / k_{F}\right)^{2}} P_{\theta \theta}(k, z)
$$

6 free parameters:

$-A(z)=\alpha_{F}\left(\frac{a\left(z_{p}\right)}{a(z)}\right)^{\beta_{F}}$
$-\beta(z)=\boldsymbol{\alpha}_{\boldsymbol{b}}\left(\frac{a\left(z_{p}\right)}{a(z)}\right)^{\boldsymbol{\beta}_{\boldsymbol{b}}}$ for IGM physics
$-I_{c t}(z)=\alpha_{c t}\left(\frac{a(z)}{a\left(z_{p}\right)}\right)^{\beta_{c t}}$ for non-linearities

Verification

- model verified with hydrodynamical simulations in
[Garny et al, 2020, arXiv:2011.03050]

Our Approach

1. compute power spectrum and 1-loop corrections
2. model the

1-dimensional flux power spectrum from the matter power spectrum
3. fit to BOSS DR14 data with $z=3.0,3.2, \ldots, 4.2$ and $k \sim 0.1-2 \mathrm{~h} / \mathrm{Mpc}$
4. compare χ^{2} with Λ CDM fit to extract parameter bounds for DCDM

^CDM Fit

linear to 1-loop: $\Delta \chi^{2}=-13.4$

\rightarrow compute profile likelihood for (ϵ, τ) grid

Results

(red contour from [Simon et al, 2022, arXiv:2203.07440])
\Rightarrow DCDM still a viable candidate to solve S_{8} tension

