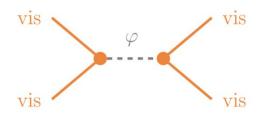
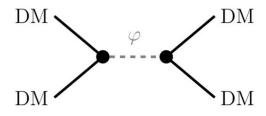
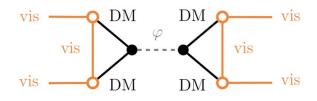


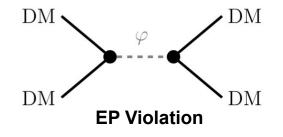
Dark 5th Forces from Linear Cosmology


Marco Costa (Scuola Normale Superiore, INFN Pisa)


based on WIP

In collaboration with S.Bottaro, E.Castorina, D.Redigolo, E.Salvioni


Dark "Fifth Force" Scenario


Typical 5F scenario

Dark 5F scenario

Introducing the models

$$\mathcal{L}_{\chi} = -\frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi - \frac{1}{2} m_{\chi}^{2} (1 + s^{n}) \chi^{2}$$

$$\mathcal{L}_{s} = -\frac{1}{2G_{s}} \partial_{\mu} s \partial^{\mu} s - \frac{1}{2G_{s}} m_{\phi}^{2} s^{2}$$

Cold Scalar DM χ

Scalar mediator s attractive long range: $m_\phi \lesssim H_0$ subPlanckian strength: $\beta \ll 1$ (never in thermal contact) 5F scenario: $\Omega_s \ll 1$ $\beta = G_S/G_N$

Introducing the models

$$\mathcal{L}_{\chi} = -\frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi - \frac{1}{2} m_{\chi}^{2} (1 + s^{n}) \chi^{2}$$

$$\mathcal{L}_{s} = -\frac{1}{2G_{s}} \partial_{\mu} s \partial^{\mu} s - \frac{1}{2G_{s}} m_{\phi}^{2} s^{2}$$

Background evolution

$$\bar{s}'' + 2\mathcal{H}\bar{s}' + G_{s}a^{2}V_{s,s} + G_{s}a^{2}\bar{\rho}_{\chi}\frac{\partial \log m_{\chi}(s)}{\partial s} = 0$$
$$\bar{\rho}'_{\chi} + 3\mathcal{H}\bar{\rho}_{\chi} = \bar{\rho}_{\chi}\frac{\partial \log m_{\chi}(s)}{\partial s}\bar{s}'$$

Cold Scalar DM χ

Scalar mediator s attractive long range: $m_\phi \lesssim H_0$ subPlanckian strength: $\beta \ll 1$ (never in thermal contact) 5F scenario: $\Omega_s \ll 1$ $\beta = G_S/G_N$

Introducing the models

$$\mathcal{L}_{\chi} = -\frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi - \frac{1}{2} m_{\chi}^{2} (1 + s^{n}) \chi^{2}$$

$$\mathcal{L}_{s} = -\frac{1}{2G_{s}} \partial_{\mu} s \partial^{\mu} s - \frac{1}{2G_{s}} m_{\phi}^{2} s^{2}$$

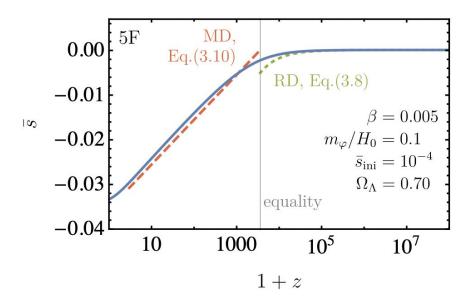
Background evolution

$$\bar{s}'' + 2\mathcal{H}\bar{s}' + G_s a^2 V_{s,s} + G_s a^2 \bar{\rho}_\chi \frac{\partial \log m_\chi(s)}{\partial s} = 0$$

$$\bar{\rho}'_\chi + 3\mathcal{H}\bar{\rho}_\chi = \bar{\rho}_\chi \frac{\partial \log m_\chi(s)}{\partial s} \bar{s}'$$

Cold Scalar DM χ

Scalar mediator s attractive long range: $m_\phi \lesssim H_0$ subPlanckian strength: $\beta \ll 1$ (never in thermal contact) 5F scenario: $\Omega_s \ll 1$ $\beta = G_s/G_N$


$$s \sim \mathcal{O}(\beta)$$

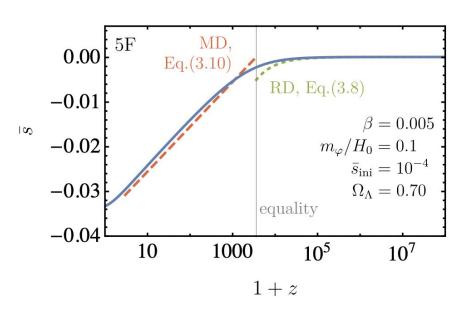
The prototype: Yukawa interaction $s\chi^2$

$$\bullet$$
 Small $s_{ ext{ini}}$: $\frac{\partial \log m_\chi(s)}{\partial s} \simeq 1$

$$ar{s} \simeq ar{s}_{
m eq} - 2eta rac{\partial \log m_\chi(s)}{\partial s} f_\chi \log rac{ au}{ au_{
m eq}}$$

non trivial attractor

The prototype: Yukawa interaction $s\chi^2$


$$\bullet$$
 Small $s_{ ext{ini}}$: $\frac{\partial \log m_\chi(s)}{\partial s} \simeq 1$

$$ar{s} \simeq ar{s}_{
m eq} - 2eta rac{\partial \log m_\chi(s)}{\partial s} f_\chi \log rac{ au}{ au_{
m eq}}$$
 is

non trivial attractor

ullet Large $s_{
m ini}$: $rac{\partial \log m_\chi(s)}{\partial s} \simeq 1/s_{
m ini}$

Ansatz:
$$ar{s} = s_{\mathrm{ini}} + \Delta$$

We recover small S_{IIII} scenario

Perturbation evolution

$$\delta_{\chi}' + \theta_{\chi} + 3\Phi' - \frac{\partial \log m_{\chi}(s)}{\partial s} \delta s' - \frac{\partial^2 \log m_{\chi}(s)}{\partial s^2} \bar{s}' \delta s = 0$$

$$\theta_{\chi}' + \left(\mathcal{H} + \frac{\partial \log m_{\chi}(s)}{\partial s}\,\bar{s}'\right)\theta_{\chi} - k^2\left(\Psi + \frac{\partial \log m_{\chi}(s)}{\partial s}\,\delta s\right) = 0$$

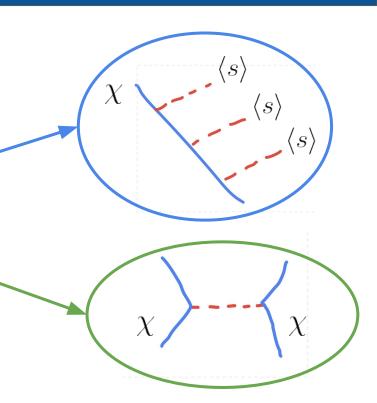
Perturbation evolution

$$\delta_{\chi}' + \theta_{\chi} + 3\Phi' - \frac{\partial \log m_{\chi}(s)}{\partial s} \underline{\delta s'} - \frac{\partial^2 \log m_{\chi}(s)}{\partial s^2} \overline{s'} \underline{\delta s} = 0$$

potentials: do not affect subhorizon physics

$$\theta_{\chi}' + \left(\mathcal{H} + \frac{\partial \log m_{\chi}(s)}{\partial s}\,\bar{s}'\right)\theta_{\chi} - k^2\left(\Psi + \frac{\partial \log m_{\chi}(s)}{\partial s}\,\delta s\right) = 0$$

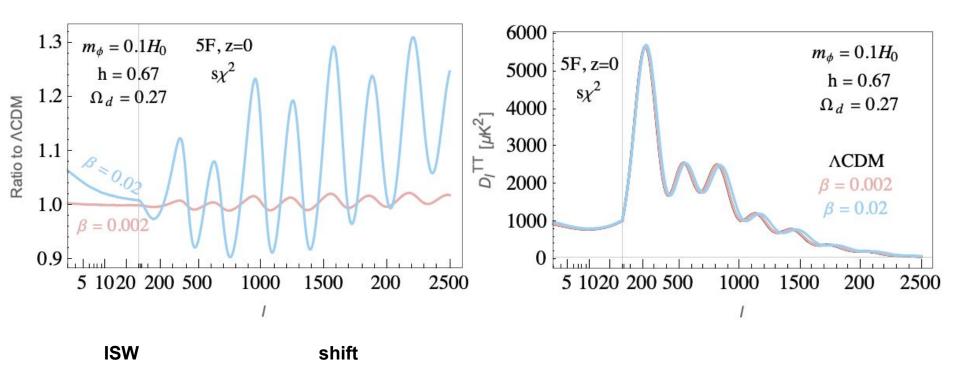
Perturbation evolution

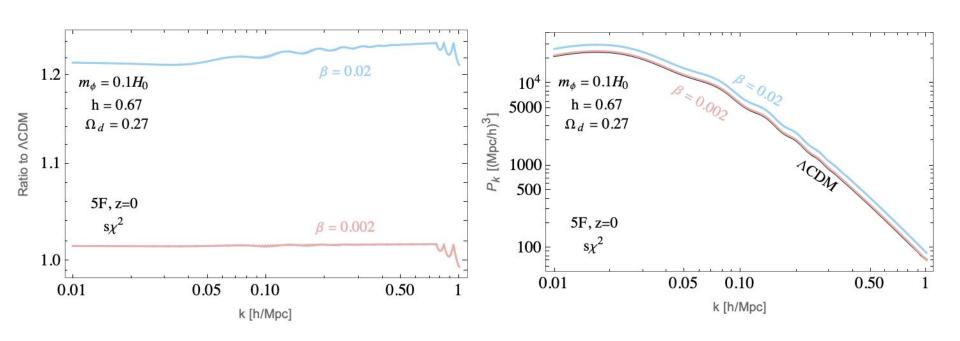

$$\delta_{\chi}' + \theta_{\chi} + 3\Phi' - \frac{\partial \log m_{\chi}(s)}{\partial s} \underline{\delta s'} - \frac{\partial^2 \log m_{\chi}(s)}{\partial s^2} \overline{s'} \underline{\delta s} = 0$$

potentials: do not affect subhorizon physics

$$\theta_{\chi}' + \left(\mathcal{H} + \left(\frac{\partial \log m_{\chi}(s)}{\partial s}\,\bar{s}'\right)\theta_{\chi} - k^{2}\left(\Psi + \left(\frac{\partial \log m_{\chi}(s)}{\partial s}\,\delta s\right)\right) = 0$$

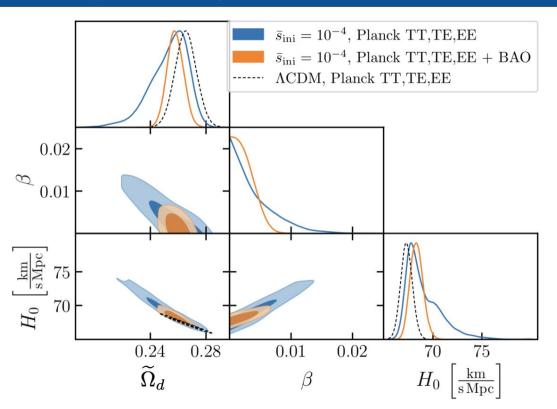
large s_{ini} rescaling:


$$\beta_{\text{eff}} = \beta \left(\frac{\partial \log m(s)}{\partial s} \right)^2$$


Other interactions

Model	$\frac{\partial \log m(s)}{\partial s}$	Small $s_{ m ini}$	Large $s_{ m ini}$
$s\chi^2$ (super-renormalizable)	$\frac{1}{1+2s}$	1	$1/s_{\rm ini}$
$\frac{1}{2}s^2\chi^2$	$\frac{s}{1+s^2}$	S	$1/s_{ m ini}$
(marginal)			
$\frac{1}{n!}s^n\chi^2$	$\frac{ns^{n-1}}{2(1+s^n)}$	s^{n-1}	$1/s_{\mathrm{ini}}$
(non-renormalizable)	ı		

Effect on CMB

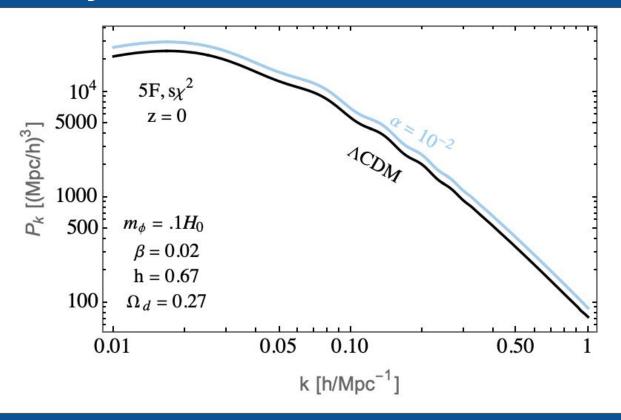


Effect on P(k)

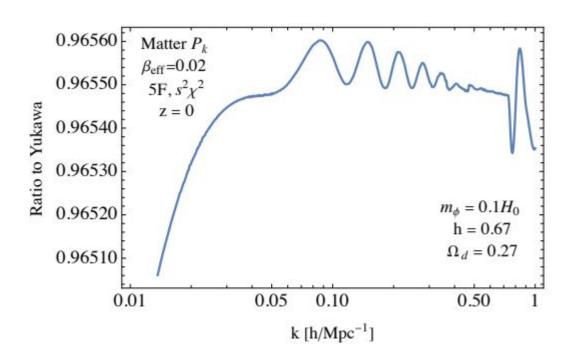
No new BAO phases

Final results (yukawa)

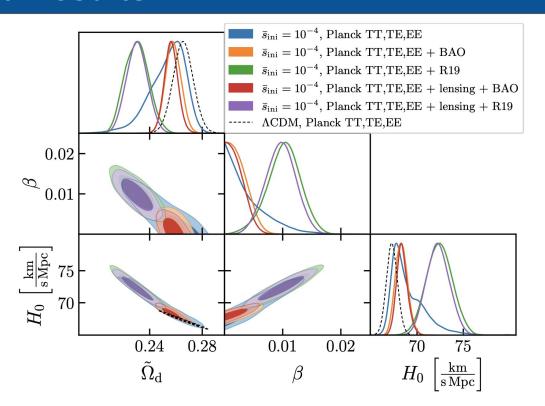
Archidiacono, Castorina, Redigolo, Salvioni 2204.08484


Conclusions

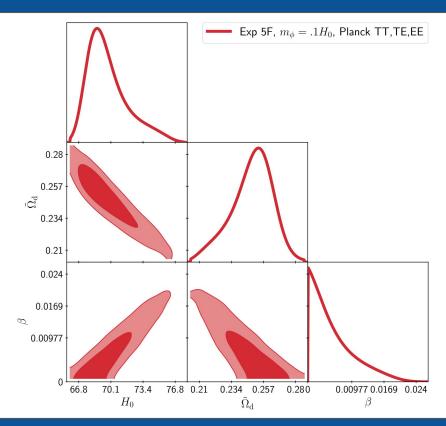
- Presence of long range force in Dark Sector modifies distances and falling
- ullet Small $s_{
 m ini}$: Yukawa has **non trivial attractor** in s background, other interactions undistinguishable from Λ CDM
- Large S_{ini} : universal behaviour, like rescaled Yukawa
- CMB: effect on low / through ISW, shift of peaks (distance modification)
- Pk: enhancement (also in velocity pert.), no new phases


Thanks for the attention!

Backup


Non adiabaticity

Perturbation rescaling



Final results

Archidiacono, Castorina, Redigolo, Salvioni 2204.08484

Final results: dilaton

