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Introduction

UV theory: CDM + Baryons
CDM
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SPT
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Introduction

Motivation: NL power vs Linear power (P0 / kns , ns = +1)

Simulations show for initial conditions with bluer spectra non-linear growth
is most suppressed compared to linear.
Standard perturbation theory (SPT) fails to provide any understanding of this
property (UV-divergence for ns � �1).

Colombi, Bouchet & Hernquist (1996)
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But simulations show bluer spectra are most suppressed at small scales

linearlinear

linear linear

nonlinearnonlinear

nonlinear

nonlinear

linearlinear

why would UV divergences appear when small-scale, nonlinear power is most 
suppressed? Also, SPT is not able to explain why NLpower < linear power.

suppressionsuppression

enhancement
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Introduction

Framework: Vlasov Perturbation Theory (VPT)

New: Expectation or Background value of velocity dispersion ✏(⌘).

Decomposition into background + fluctuation part (S+V+T),

�✏ij = �✏
S
ij + �✏

V
ij + �✏

T
ij , (1)

ui = u
S
i + u

V
i = divergence ✓ + vorticity wi (2)

In Fourier space the equations of motion can be written in a form analogous
to SPT,

 
0
k,a(⌘) + ⌦ab(k, ⌘) k,b(⌘) =

Z

pq
�abc(p, q) p,b(⌘) q,c(⌘) , (3)

where now  SPT = (�, ✓), !  VPT = (�, ✓, g, �✏, A| {z }
S

, wi, ⌫i| {z }
V

, tij|{z}
T

, . . . ) .

The linear evolution is governed by time- and scale-dependent matrix
⌦ab(k, ⌘) where already the background dispersion ✏(⌘) enters.

! This sets a new dispersion scale: k� = 1/

p
✏(⌘)
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Linear Solutions

VPT: Linear Kernels for �, ✓ and ḡ (dispersion only)

Modes that cross the dispersion scale are suppressed (UV screening).

VPT linear modes know about small scale structure (e. g. halo formation)
through background values of cumulants.

SPT: free linear modes, no information on halo formation at small scales.
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Linear Solutions

VPT: Linear Kernel for � (convergence of hierarchy)
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Suppression is only enhanced when allowing for more complex cumulant
truncations ! UV screening is robust to di↵erent hierarchy assumptions.
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Non-Linear Regime

One-Loop Power Spectrum Integrand (P0 / kns , ns = +1)

P Integrand

�� (k, q, ⌘)|SPT / qns+1 , P Integrand

�� (k, q, ⌘)|VPT / q�2 , P��(k, ⌘) =
R
d ln q P Integrand

�� (k, q, ⌘).

0.05 0.10 0.50 1 5 10

10-7

0.001

Dominik Laxhuber TUM CERN Workshop 2022 8 / 17



Non-Linear Regime

One-Loop Power Spectrum Integrand (ns = �1, . . . ,+2)

P Integrand

�� (k, q, ⌘)|SPT / qns+1 , P Integrand

�� (k, q, ⌘)|VPT / q�2 , P��(k, ⌘) =
R
d ln q P Integrand

�� (k, q, ⌘).
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VPT predictions vs Simulations

One-Loop Power Spectrum: P�� /P0 (here: k� matched, ns = 1)
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VPT predictions vs Simulations

One-Loop Power Spectrum: P�� /P0 (here: k� matched, ns = �1, ..,+2)
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VPT predictions vs Simulations

One-Loop Power Spectrum: P�✓ (ns = 2, no free parameters)
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VPT predictions vs Simulations

One-Loop Power Spectrum: P✓✓ (ns = 2, no free parameters)
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VPT predictions vs Simulations

equilateral Bispectrum: B��� (ns = 2, no free parameters)
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VPT predictions vs Simulations

Two-Loop Vorticity Power Spectrum: Pww (ns = 0, no free

parameters)



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Going to two-loop reveals the general scaling Pwiwi(k, ⌘) / k
2 for k ! 0,

i. e. we found in general nw = 2 for k ! 0.

The one-loop contribution is accidentally suppressed as k
4.

This transition at low-k is confirmed by N-body simulations.
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Conclusion

Conclusion: Non-Linear VPT

(i) Linear VPT far richer than SPT ! UV screening

(ii) Non-linear VPT demonstrates small-scale decoupling and converges.

(iii) � and ✓ power spectra predictions agree well with N-body results up to knl

with a reach that increases with ns.

(iv) Generation of vorticity as well as vector and tensor modes of the dispersion
tensor at second order PT, Pww scales as k

2 for k ! 0 in general which is
confirmed by N-body measurements.

) An explorative study of the Two-Loop showed only minor di↵erences up to
the non-linear scale.

) Applications to ⇤CDM and redshift-space distortions are planned in future.
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Backup slides

VPT: Determination of Background dispersion ✏(⌘)

The perturbation variables are coupled to the background values and vice
versa, so it is necessary to determine all the expectation values, which then
introduce a new scale, e. g. the dispersion scale k�:

1 measure directly from simulations, as they are physical quantities,

2 calculate self-consistently from their equations of motion,

3 calculate from halo models,

4 matching them to the density power spectrum only.
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Non-Linear Regime

Non-Linear Kernels: F2, �/✓ and F3, �/✓ vs q/k� (here: k/k� = 0.2)
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Non-Linear Regime

Comparison with simulations: Impact of hierarchy assumptions
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Conclusion

VPT vs EFT (Pajer & Zaldarriaga, 2013)

PEFT/P0 = 1+

✓
k

knl

◆ns+3 h
↵(ns)+↵̄(ns) ln

k

knl

i
+�

✓
k
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