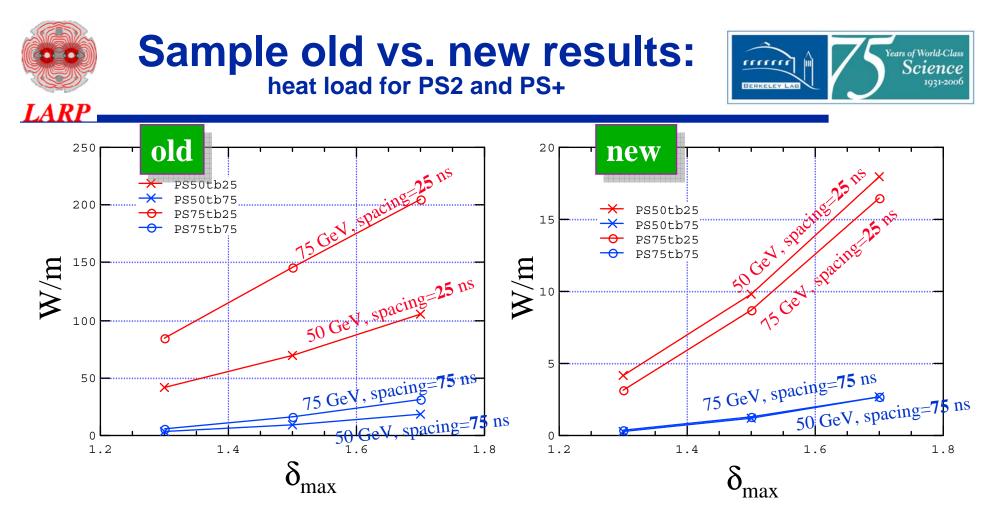


ECLOUD in PS2, PS+, SPS+: update Feb. 2007

Miguel Furman

(presented by M. Venturini) Center for Beam Physics, LBNL ECL2 -- CERN, 1-2 March 2007

(Initial talk presented at CARE-HHH-APD LHC-LUMI-06, IFIC, Valencia, 16-20 October 2006)


- Results for ecloud build-up in LHC injector upgrades (PS2, PS+, SPS,
 SPS+,...)
 - Bunch spacings $t_{\rm b}$ =12.5, 25, 50 and 75 ns
 - Obtained with code POSINST
 - Only in a dipole bending magnet, during 1st injected batch
- Initial results (PPT file) were presented by MF at LUMI06
 - Coarse integration time step ($\Delta t=0.1-0.3$ ns) for expediency
- \checkmark Present (new) results have $\Delta t=0.02-0.07$ ns
 - These are now published in the LUMI06 proceedings (see also http://mafurman.lbl.gov/LBNL-61925.pdf)
- Basic conclusion: Γ
 - New results much more favorable vis-à-vis heat load (roughly speaking, factor 5-20, depending on the case)
 - Caveat: time step $\Delta t=0.02-0.07$ ns believed to be adequate, but not methodically checked

Input parameter table (from LBNL-61925, based on FZ's "psplusetcparameters" and "Ihcupgradeparameters")

		E_b	В	(a, b)	Nb	t _b	(σ_x, σ_y)	σ_z	profile
Case	Our notation	GeV	Т	cm	1011	ns	mm	cm	
PS2, 50 GeV extr.	PS50tb12p5	50	1.8	(8,4)	2	12.5	(1, 0.9)	57.3	gauss.
	PS50tb25	50	1.8	(8,4)	4	25	(1, 0.9)	93.5	gauss.
	PS50tb50	50	1.8	(8,4)	5.4	50	(1, 0.9)	104	flat
	PS50tb75	50	1.8	(8,4)	6.6	75	(1, 0.9)	104	flat
PS+, 75 GeV extr.	PS75tb12p5	75	2.7	(8,4)	2	12.5	(0.8, 0.8)	50.5	gauss.
	PS75tb25	75	2.7	(8,4)	4	25	(0.8, 0.8)	83.5	gauss.
	PS75tb50	75	2.7	(8,4)	5.4	50	(0.8, 0.8)	92.3	flat
	PS75tb75	75	2.7	(8,4)	6.6	75	(0.8, 0.8)	92.3	flat
SPS, 50 GeV inj.	SPS50tb12p5	50	0.225	(7, 2.2)	1.9	12.5	(3.1, 1.6)	14.3	gauss.
	SPS50tb25	50	0.225	(7, 2.2)	3.8	25	(2.8, 1.6)	23.4	gauss.
	SPS50tb50	50	0.225	(7, 2.2)	5.2	50	(3, 1.6)	26.1	flat
	SPS50tb75	50	0.225	(7, 2.2)	6.4	75	(3, 1.6)	26.1	flat
SPS, 75 GeV inj.	SPS75tb12p5	75	0.337	(7, 2.2)	1.9	12.5	(2.4, 1.3)	12.6	gauss.
	SPS75tb25	75	0.337	(7, 2.2)	3.8	25	(2.1, 1.3)	20.9	gauss.
	SPS75tb50	75	0.337	(7, 2.2)	5.2	50	(2.3, 1.3)	23.1	flat
	SPS75tb75	75	0.337	(7, 2.2)	6.4	75	(2.3, 1.3)	23.1	flat
SPS, 450 GeV extr.	SPS450tb12p5	450	2.025	(7, 2.2)	1.9	12.5	(1.2, 0.9)	12	gauss.
	SPS450tb25	450	2.025	(7, 2.2)	3.8	25	(1, 0.5)	12	gauss.
	SPS450tb50	450	2.025	(7, 2.2)	5.2	50	(1, 0.5)	15	flat
	SPS450tb75	450	2.025	(7, 2.2)	6.4	75	(1, 0.5)	15	flat
SPS+, 1 TeV extr.	SPS1000tb12p5	1000	4.5	(6, 2)	1.8	12.5	(0.5, 0.4)	12	gauss.
	SPS1000tb25	1000	4.5	(6, 2)	3.6	25	(0.6, 0.4)	12	gauss.
	SPS1000tb50	1000	4.5	(6, 2)	5.1	50	(0.5, 0.4)	15	flat
	SPS1000tb75	1000	4.5	(6, 2)	6.2	75	(0.5, 0.4)	15	flat
SPS+a, 50 GeV inj.	SPSpa50tb12p5	50	0.225	(6, 2)	1.9	12.5	(3.1, 1.6)	14.3	gauss.
	SPSpa50tb25	50	0.225	(6, 2)	3.8	25	(2.8, 1.6)	23.4	gauss.
	SPSpa50tb50	50	0.225	(6, 2)	5.2	50	(3, 1.6)	26.1	flat
	SPSpa50tb75	50	0.225	(6, 2)	6.4	75	(3, 1.6)	26.1	flat
SPS+b, 75 GeV inj.	SPSpb75tb12p5	75	0.337	(6, 2)	1.9	12.5	(2.4, 1.3)	12.6	gauss.
	SPSpb75tb25	75	0.337	(6, 2)	3.8	25	(2.1, 1.3)	20.9	gauss.
	SPSpb75tb50	75	0.337	(6, 2)	5.2	50	(2.3, 1.3)	23.1	flat
	SPSpb75tb75	75	0.337	(6, 2)	6.4	75	(2.3, 1.3)	23.1	flat

► Old: MF talk at LUMI06

-21 kicks/bunch, or $\Delta t = (6-7) \times 10^{-10} \text{ s}$

New: MF paper in LUMI06 proceedings (LBNL-61925)

-201-251 kicks/bunch, or $\Delta t = (5.5-6.7) \times 10^{-11} \text{ s}$

Sample new results: heat load vs. δ_{max} (PS, E_b=50 or 75 GeV; SPS, E_b=75 GeV; t_b=25, 50, 75 ns) Years of World-Clas Science 1931-200 BERKELEY I LARP old result PS50tb25: 100 W/m at $\delta_{max}{=}1.7$ (see slide 4) **SPS** and **SPS+b** 20 50 PS50tb25 25 ns SPS75tb25 PS50tb50 SPS75tb50 40 15 W/m SPS75tb75 25 ns SPSpb75tb25 W/m30 SPSpb75tb50 PS75tb75 SPSpb75tb75 10 20 PS2 and PS+ **50 ns 50 ns** 10 75 ns **75 ns**

0

1.2

 δ_{max} Figure 4: Simulated PS ecloud heat load vs. δ_{max} for cases PS50 and PS75 (PS2 and PS+ in "psplusetcparameters," respectively).

1.4

 δ_{\max} Figure 7: Simulated SPS ecloud heat load vs. δ_{max} for cases SPS75 and SPSpb75. The only difference between the calculation for these two cases is the transverse chamber size (see text).

1.6

1.8

1.4

 $rac{1}{5}$ Generally, t_b=50 and 75 ns is much more favorable than 25 ns

1.8

— But 75 ns not significantly better than 50 ns

1.6

 $rac{}$ SPS ~x2 higher heat load for same E_b, N_b and t_b than PS probably owing to smaller $\sigma_{\!\scriptscriptstyle 7}$ and smaller chamber size

Lawrence Berkeley National Laboratory M. Venturini, M. Furman, "ecloud in PS2, PS+, SPS+" update Feb. 07 p. 5

LHC-ECL2, CERN, Mar. 2007

0

1.2

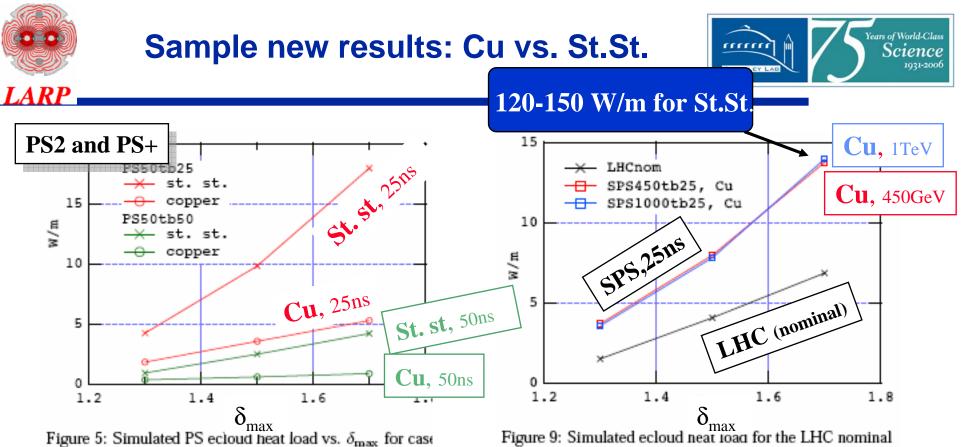
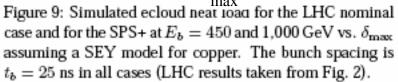



Figure 5: Simulated PS ecloud heat load vs. δ_{max} for case PS50, for copper and stainless steel chamber. The only dif ference in the calculation for the two cases is the secondary emission energy spectrum of the two metals.

- - Owing to smaller rediffused component in SE energy spectrum
 - Subtle mechanism; explained in detail in Sec. IV-B of http://prstab.aps.org/pdf/PRSTAB/v9/i3/e034403
- confirm this!

Conclusions

- $rac{}$ Heat load depends inversely with t_b
 - $-t_{b}$ =75 ns is best, closely followed by 50 ns
 - $-t_{b}$ =50 ns much better than 25 ns
 - $-t_b$ =12.5 ns is terrible
- Cu (or Cu-coated) chamber much better than St.St.
 - But this conclusion is based on a particular set of measurements of the SE energy spectrum
 - Re-measure energy spectrum in order to verify this conclusion
- Not much difference in heat load between gaussian vs. flat long. profile for the LHC, at least for t_b=50 ns
- Not much difference between PS2 and PS+, nor between SPS50 and SPS+a50, except at high $δ_{max}$ for t_b=25 ns
- ∧ This investigation is limited to heat load in the dipole bends
- I feel much more comfortable about the relative rankings than about the absolute values of the heat load