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Outline

1. E-cloud observations
dynamic pressure rise, tune shift, electrons, 
instabilities, emittance growth

2. E-cloud cures
in-situ baking, NEG coating, bunch patterns, solenoids, 
anti-grazing rings, pre-pumping in cold regions, scrubbing

3. Open problems
instabilities during transition crossing, emittance growth
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E-cloud observations in RHIC

1. Dynamic pressure rise
2. Tune shift
3. Electrons
4. Instabilities

– Beam instabilities
– Pressure instabilities

5. Emittance growth
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First pressure rise observation
1st fill with 110 Au79+ bunches N=0.50·109 Oct. 2001

next fill N=0.44·109

10-7 Torr abort limit

Beam losses
during acceleration
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Pressure rise mechanisms considered

• Electron induced desorption → dominating for operation
– Observed coherent tune shift in bunch train due to e-cloud
– Electron detectors

• Ion induced desorption → tolerable for operation
– Rest gas ionization, ion acceleration through beam
– Ion impact energies at wall ~15eV for Au, ~60eV for p
– Visible pressure rise, may lead to instability in unbaked regions 

(observed with Au only)

• Beam loss induced desorption → tolerable for operation
– Need large beam loss for significant pressure rise
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Electron cloud observation: tune shift

ΔQ≈2.5·10-3

(1) From measured tune
shift, the e-cloud density 
is estimated to be 
0.2 – 2.0 nC·m-1

(2) E-cloud density can be
reproduced in simulation
with slightly higher charge
and 110 bunches 
(CSEC by M. Blaskiewicz)

33·1011 p+ total, 0.3·1011 p+/bunch, 110 bunches, 108 ns spacing (2002)

[W. Fischer, J.M. Brennan, M. Blaskiewicz, and T. Satogata, “Electron cloud measurements and
observations for the Brookhaven Relativistic Heavy Ion Collider”, PRST-AB 124401 (2002).]



Wolfram Fischer 7

E-cloud observation: formation at injection

Courtesy U. Iriso

electron cloud density
(red line)

bunches being filled

time
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E-cloud observation: pressure rise
Pressure increase is proportional to average e-cloud density

Concluded that all operationally relevant dynamic pressure 
increases can be explained by electron clouds.

U. Iriso [time-averaged e-detector signal]
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E-cloud observation: beam instability
Crossing transition with slowly ramping sc. Magnets

(all ions except protons)

→ Instability limits bunch intensities for ions (~1.5 – 2.0×1011 e )
→ Instability is fast (τ =15 ms), transverse, single bunch

• γt-jump implemented
• Octupoles near transition
• Chromaticity control

(need ξ-jump for higher 
bunch intensities)

→ Electron clouds can lower stability threshold, 
will gain more operational experience in next ion run 

Longitudinal distribution after transverse
instability (courtesy C. Montag)

J. Wei et al., HB2006
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E-cloud observation: pressure instability

[Calculations: W. Fischer, U. Iriso, and E. Mustafin, “Electron cloud 
driven vacuum instability”, workshop proceedings HB 2004] 

Pressure instability
observed with 
growth times of
2-12 seconds.

Need:
• Au79+ 

(large rest gas ionization)

• unbaked locations
(large desorption)

• e-clouds 
(short bunches)

Calculations show
possibility of pressure
instability with heavy
ion beam and heavy
molecules (CO). Do
not fully match.
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E-cloud observation: emittance growth

[E. Benedetto et al., “Simulation study on electron …”, PRST-AB 8, 124402 (2005); E. Benedetto et al.,
“Incoherent effects of electron clouds in proton storage rings”, PRL 97, 034801 (2006); S.Y. Zhang 
and V. Ptitsyn, “Proton beam emittance growth in Run-5 and Run-6”,  BNL C-A/AP/257 (2006).] 

Courtesy S.Y. Zhang

Short bunches with
same intensity lead 
to smaller luminosity.

[Single short-bunch store 
only for comparison. 
ε-growth from reasons 
other than e-cloud possible.]

2 polarized proton stores

Long bunches Short bunches
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E-cloud cures investigated in RHIC

1. In-situ baking
2. NEG coating
3. Bunch patterns 
4. Solenoids 
5. Anti-grazing rings
6. Pre-pumping in cold regions
7. Scrubbing
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E-cloud cure: in-situ baking
RHIC beam pipes preparation:
• 316LN, purchased from Mannesmann Handel AG, Düsseldorf 
• Drawn tubes were detergent-cleaned, water rinsed, acid 

prickled (HF + HNO3), water rinsed, annealed at 1050ºC 
for 10 min, quenched (all at manufacturer)

• At BNL, the pipes were cut to length, the end flanges welded, 
then baked under vacuum at 350ºC for 24 h (?), leak checked, 
and sealed before delivering to Grumman (magnet maker)

Warm regions not baked initially, 
started comprehensive in-situ baking after 
observation of dynamic pressure rise
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E-cloud cure: NEG coating (1)
• Primary counter measure for warm sections

– Total length of warm sections     : 700 m
– Sections that can be NEG coated: 520 m

• Coating done by SAES Getters, Milan
• Activation:

>180ºC x 24 hrs, or 200oC x 4 hrs, or 250oC x 2 hrs

H.C. Hseuh
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E-cloud cure: NEG coating (2)
Pressure and proton intensity in 12 Blue warm strait sections (Q3-Q4).

[S.Y. Zhang et al., “Experience in reducing electron cloud and dynamic pressure rise …”, EPAC06] 
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E-cloud cure: NEG coating (3)
Increase of total stored charge in operation

Notes: charge also limited by effects other than total charge (injectors, transition), 
dynamic pressure can be limited by single location (experiment).

Au79+
p+

d+

Au79+

Cu29+

p+

Au79+

Max
possible
[520 m]

p+ Required
charge
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E-cloud cure: bunch patterns
• Useful for operation with less than max number of bunches

• Patterns with same intensity in fewer bunches and most uniform 
distributions along circumference maximize luminosity and 
minimize e-cloud
(problem lends itself for analysis 
with maps – U. Iriso)

• RHIC 2004 Au-Au limited by 
dynamic pressure in PHOBOS 
experiment

• Changed number of bunches 
from 61 to 56 to 45 as more 
bunch intensity became 
available, maximized luminosity
at e-cloud limit in PHOBOS 

[G. Rumolo and W. Fischer, “Observation on background …”, BNL C-A/AP/146 (2004); 
W. Fischer and U. Iriso, “Bunch patterns and pressure rise in RHIC”, EPAC04; U. Iriso, PhD thesis] 
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E-cloud cure: solenoids

• Both pressure and e- signal decrease with 
weak solenoid fields, not suppressed 
completely 

• No further reduction noticed with field 
increases from 12 to 27 G

Courtesy U. Iriso

Had 64 m of solenoids installed, max field of 65 G.
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E-cloud cure: anti-grazing rings (1)

[P. Thieberger et al., “Estimates for secondary …”, Phys. Rev. ST Accel. Beams 7, 093201 (2004).]

Idea of Peter Thieberger: 
Macroscopic ridges will transform 
• beam loss with grazing incidence  
(= multiple perpendicular hits) into

• beam loss with single perpendicular hit
• reduce ion-impact desorption by factor
10-100 (both electrons and molecules)

Measured RHIC beam
pipe surface and 1 mrad
incidence trajectory 
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E-cloud cure: anti-grazing rings (2)

[S.Y. Zhang et al., “Effects of antigrazing ridges …”, Phys. Rev. ST Accel. Beams 8, 123201 (2005).] 

See improvement, but to be effective ridges must intercept beam,
which can create additional background. Ridges currently not used in RHIC.

Had 5 grazing rings installed in 2 long straight sections (bi5, yo5)

Courtesy S.Y. Zhang

111 p bunches
1.5×1011/bunch 2004

2005
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E-cloud cure: pre-pumping cold regions
• RHIC relied on cryo-pumping in arcs initially 

(up to 100 mono-layers on wall)
• Observed increase in gas density with high-intensity beam

• Additional pumps lowered pressure to 10-6 to 10-7 Torr 
(corresponding to less than mono-layer) before cool-down 

H.C. Hseuh
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Small improvement

E-cloud cure: scrubbing

[S.Y. Zhang, et al., “Beam scrubbing for RHIC polarized proton operation”, EPAC04 (2004).] 

• Scrubbing test damaged BPM electronics in tunnel, moved out now
• Not effective for warm regions (in-situ baking, NEG much better)
• May be needed in cold regions if e-cloud problems persist

2003, proton beam at injection, sector bo2 (unbaked, no NEG)

72 bunches
112 bunches

Courtesy S.Y. Zhang
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Summary – E-cloud in RHIC

• E-cloud effects observed at RHIC:
dynamic pressure rise, instabilities (beam and pressure), 
emittance growth

• Cures investigated at RHIC include: 
baking, NEG coating, bunch patterns, solenoids, 
anti-grazing rings, pre-pumping in cold regions, scrubbing

• Open problems:
instabilities during transition crossing (will learn more this year with Au 
beams), emittance growth (will learn more next year with polarized protons)


