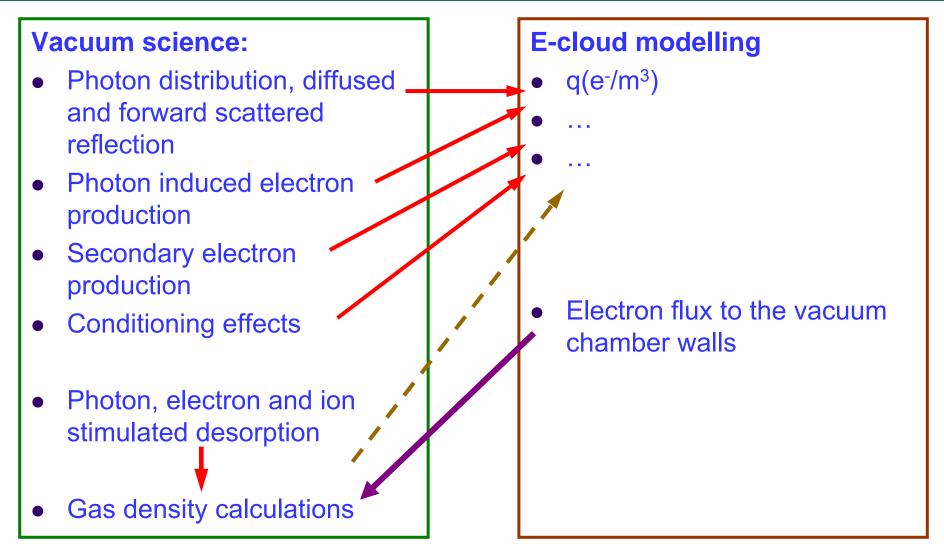
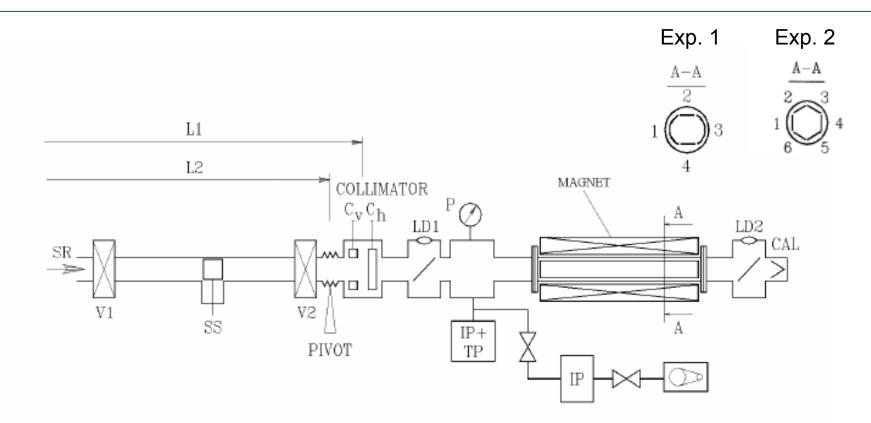
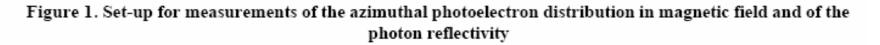


How e-cloud effect affects the ILC DR Vacuum System


Dr. Oleg B. Malyshev ASTeC Daresbury Laboratory


Vacuum studies vs e-cloud modelling



1-2 March, 2007

Photon reflectivity and azimuthal distribution

Forward scattered reflectivity at 20 mrad grazing incidence

	Sample Reflectivity (power) (%)	Reflectivity (photons) (%)
Stainless steel as- received	2	22
Cu co-laminated as- received	50	95
Cu co-laminated oxidised	20	65

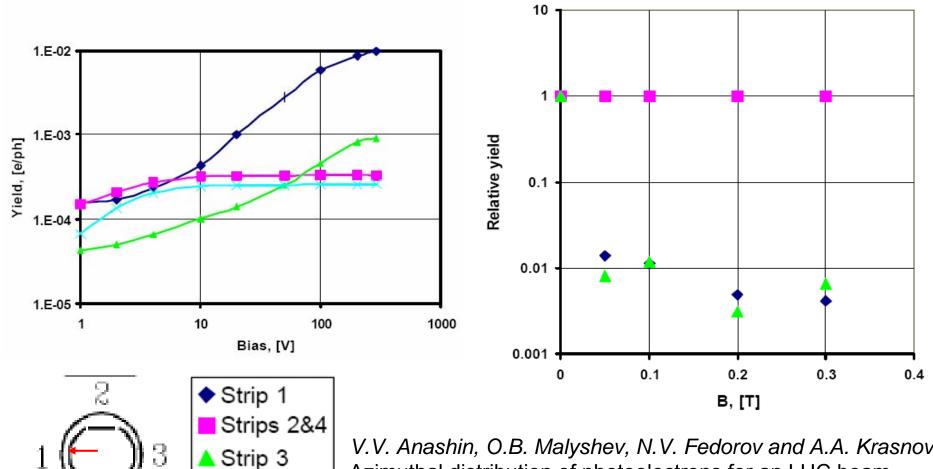
I.e. the reflected photons are mainly low energy photons

V.V. Anashin et al. / Nuclear Instruments and Methods in Physics Research A 448 (2000) 76-80.

See also: V. Baglin, I.R. Collins, O. Grobner, EPAC'98, Stockholm, June 1998.

1-2 March, 2007

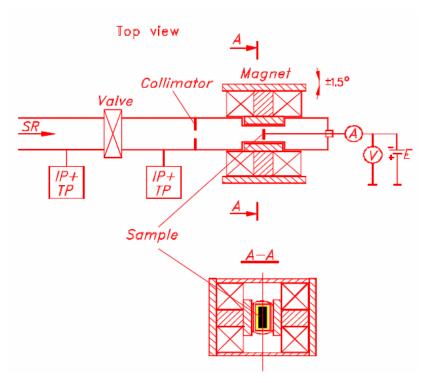
Photon azimuthal distribution – 6 strips experiment


Sample	ε _c (eV)	Strip 1	Strip 2 or Strip 3	Strip 4 or Strip5	Strip 6					
$I_i / \sum_{i=1}^6 I_i$										
Stainless steel	243	74	3.8	8	2.5					
Bright Cu	245	90	1.9	2	1.8					
Oxidised Cu	205	95	1	1.1	1					
$I_i(1-R)/\sum_{i=1}^6 I_i$										
Stainless steel	243	60	2.5	6.0	1.5					
Bright Cu	245	4.5	0.1	0.1	0.1					
Oxidised Cu	205	30	0.3	0.4	0.3					

1-2 March, 2007

O.B. Malyshev

Photon azimuthal distribution – 4 strips experiment



V.V. Anashin, O.B. Malyshev, N.V. Fedorov and A.A. Krasnov. Azimuthal distribution of photoelectrons for an LHC beam screen prototype in a magnetic field. Vacuum Technical Note 99-06. LHC-VAC, CERN April 1999.

1-2 March, 2007

Photoelectron current in magnetic field

V.V. Anashin, O.B. Malyshev, N.V. Fedorov and A.A. Krasnov. Photoelectron current in magnetic field. Vacuum Technical Note 99-03. LHC-VAC, CERN April 1999.

- <u>Sample SS</u>. The stainless steel sample made from a rolled sheet.
- <u>Sample Cu/SS-1 (=)</u>. The copper laminated stainless steel made from a sheet; the rolling lines are across the sample.
- <u>Sample Cu/SS-2</u> (|||). The copper laminated stainless steel made from a sheet; the rolling lines are along the sample.
- <u>Sample Cu/SS-3</u> (||| ox). The copper laminated stainless steel made from a sheet; the rolling lines are along the sample. Oxidation.
- <u>Sample Cu/SS-4</u> (__/). The copper laminated stainless steel made from a sheet with turned-in, long edges, i.e. 5-mm wide strips at the long edges were turned to 10–15° towards the SR; the rolling lines are along the sample.
- <u>Sample OFHC</u> (<u>LLL</u>). The copper sample machined from a bulk OFHC with ribs along the sample. No special treatment. The ribs are 1 mm in height and
- 0.2 mm in width. The distance between the ribs is 3 mm.
- Sample Au/SS. The stainless steel sample electro-deposited with 6-µm Au.

1-2 March, 2007

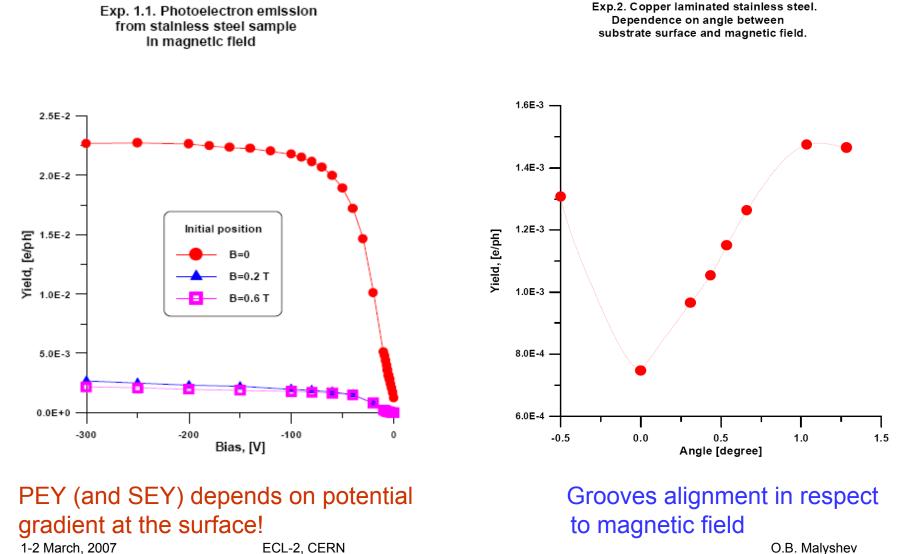
Results

1) The photoelectron yield is different for studied samples at zero potential, but the same at the accelerating potential of 300V,

 $k = (1.5 \pm 0.3) \times 10^{-2}$ e- $l\gamma$. The photoelectron yield from the layer of gold is about two times higher.

2) The magnetic field suppress the photoelectron yield up to **30–100 times** when the surface is parallel to the magnetic field, but this effect is much less at

the angle of 1.5° (5–10 times).


3) The photoelectron yield decreases with the accumulated photon dose: the photoelectron yield reduced 2–3 times at the accumulated photon dose of about

10²² photons/cm². 1-2 March, 2007

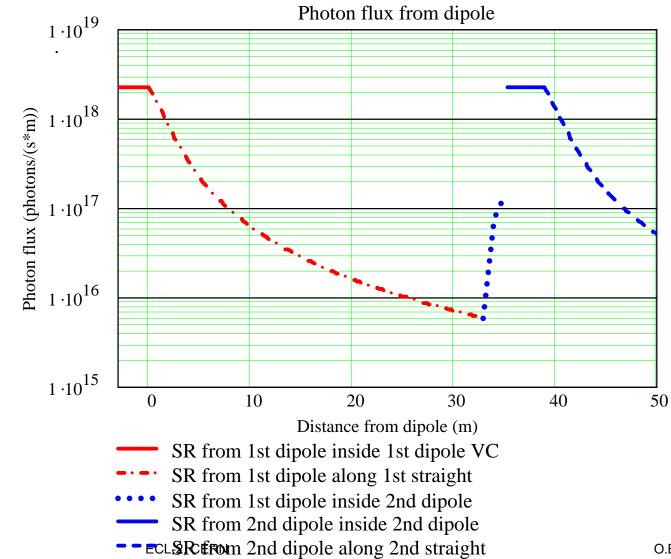
d is	Experiment No.	Beams		Measurements without		Magnetic field		
les at me at the 00V,	and			magnetic field		efficiency:		
	Sample	E _{e-e+} ,	E _c ,	<i>κ</i> ; [e¯/γ]	$\frac{\kappa(0V)}{\kappa(0V)}$	Reflectivity	U = 0	U=-300V
		[MeV]	[eV])	U=-300V	κ(−300V)	$\frac{\kappa(+300V)}{\kappa(-300V)}$	$\frac{\kappa(0.6T)}{\kappa(0.T)}$	$\frac{\kappa(0.6T)}{\kappa(0T)}$
The						K (500 r)	$\kappa(0T)$	$\kappa(0T)$
he layer	Exp. 1, SS	518	259	0.016	0.036	0.024	0.023	0.028
higher.	Exp. 2,	514	253	0.015	0.15	0.044	0.010	0.029
press the	Cu/SS-1 (\equiv)							
30–100	Exp. 3,	470	194	0.014	0.11	0.015	0.021	0.030
s parallel this effect	Cu/SS-2 ()							
	Exp. 4,	392	112	0.014	0.052	0.033	0.018	0.015
`	Cu/SS-3 (ox)							
nes).	Exp. 5,	380	102	0.0084	0.055	0.023	0.024	0.013
k i i i i i i i i i i i i i i i i i i i	OFHC $(\perp \perp \perp)$							
nulated ectron it the e of about	Exp. 6,	220	20	0.014	0.07	_	0.02	0.06
	Cu/SS-4 (\/)							
	Exp. 7,	560	319	0.018	0.05	0.180	0.01	0.08
	Cu/SS-4 (\/)							
ECL-2, CERN	Exp. 8, Au/SS	580	356	0.027	0.06	0.045	0.028	0.042

Examples of measurement results

O.B. Malyshev

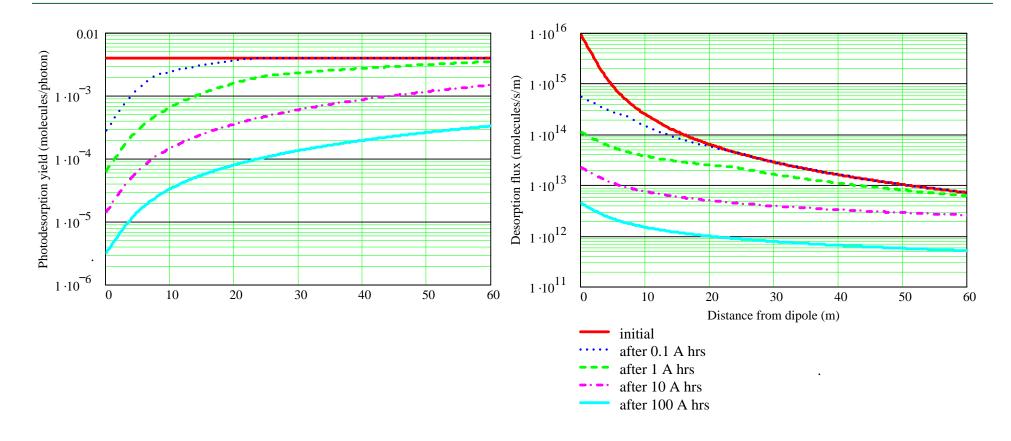
Input parameters in e-cloud models

- Photon distribution, diffused and forward scattered reflection
- Photon induced electron production
- Secondary electron production
- Conditioning effects
- Effect of magnetic field

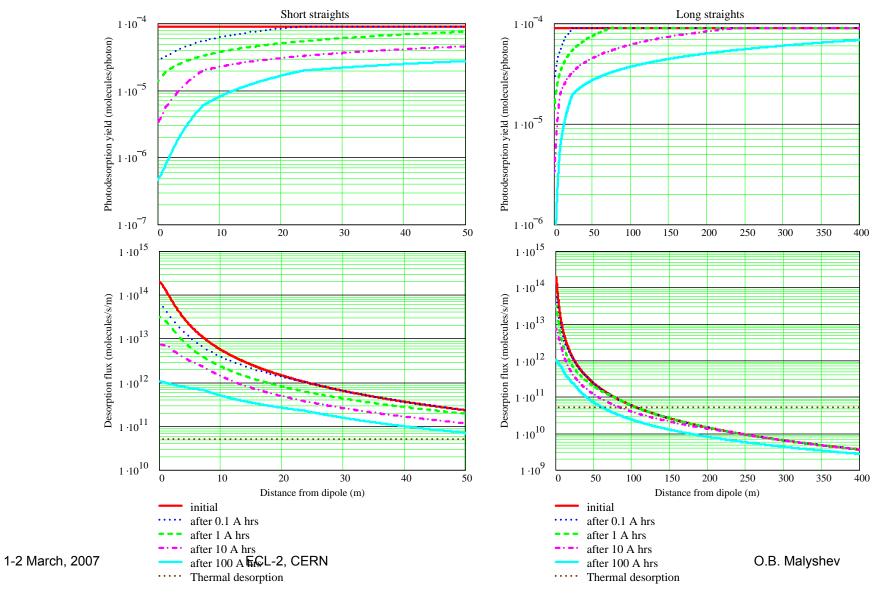


Required vacuum for ILC DRs

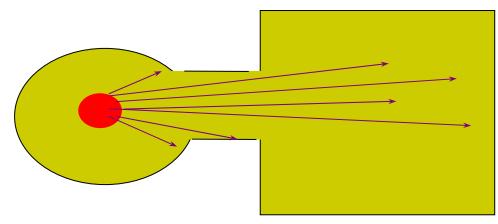
- The need to avoid fast ion instability leads to very demanding specifications for the vacuum in the electron damping ring [Lanfa Wang, private communication]:
 - < 0.5 nTorr CO in the arc cell,
 - < 2 nTorr CO in the wiggler cell and
 - < 0.1 nTorr CO in the straight section
- In the positron damping ring required vacuum level was not specified and assumed as 1 nTorr (common figure for storage rings)


Photon flux onto the 50-mm diameter vacuum chamber walls inside the ILC DR dipoles and along the short straights

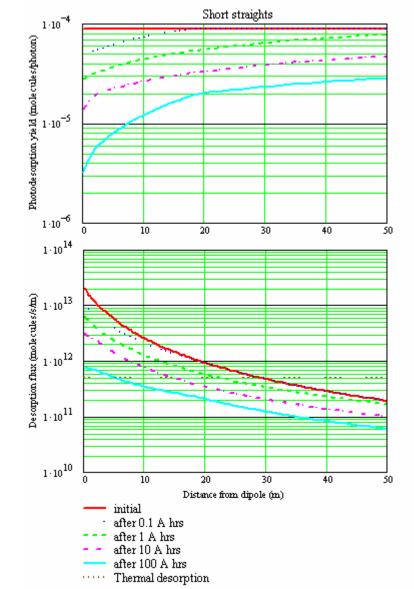
1-2 March, 2007



Photodesorption yield and flux during conditioning



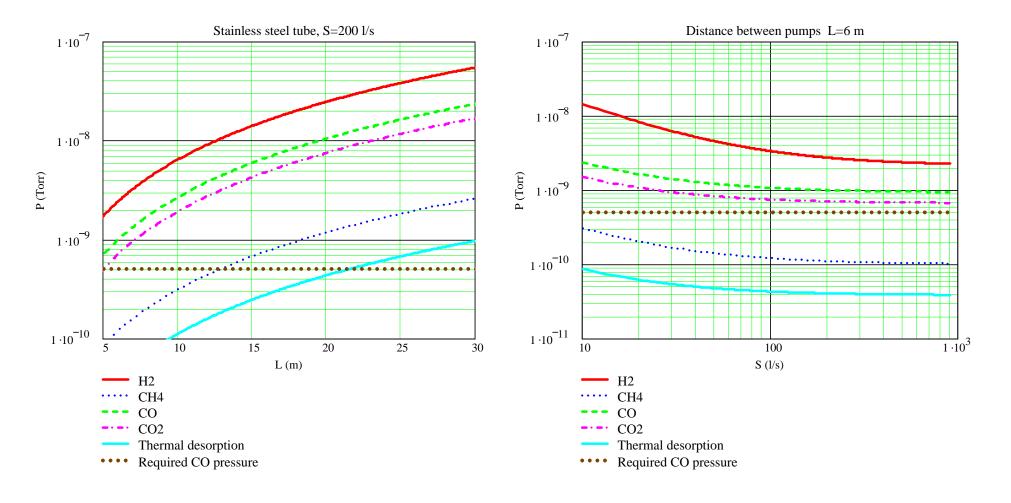
Photodesorption yield and flux along the damping ring straights made of stainless steel *tubular vacuum chamber* and baked in-situ at 300°C for 24 hrs.



Photodesorption yield and flux along a stainless steel vacuum chamber with an ante-chamber in the damping ring straights baked in-situ at 300°C for 24 hrs.

If ~10% of photons hit a beam vacuum chamber, photon stimulated desorption after 100 Ahr is almost the same as without antechamber, but thermal induced desorption is much larger.

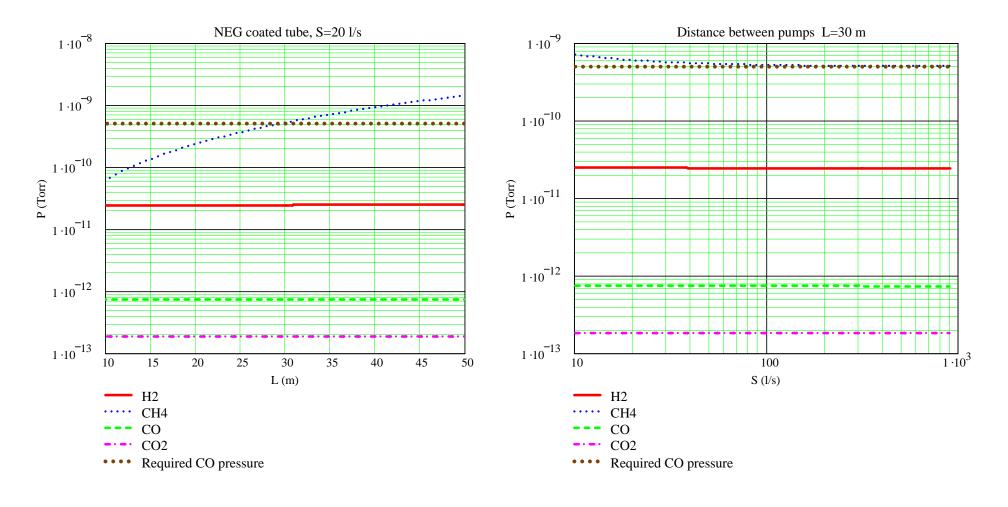
Tubular chamber vs a vacuum chamber with antechamber


- Assumption:
 - 90% of photons are absorbed by SR absorbers and
 - 10% of photons are distributed along the beam vacuum chamber, a gas load analysis can be performed.
- Results:
 - The distributed gas desorption due to 10% of photons is after 100 Ahr of beam conditioning the distributed photon stimulated desorption due to 10% of photons is the same for both designs: with and without antechamber.
 - Meanwhile, in addition to photon stimulated desorption from the chamber there is thermal outgassing (10 times larger with an ante-chamber) and photon stimulated desorption from the lumped absorber.
 - Therefore the total outgassing inside the vacuum chamber with an antechamber is larger. Hence, one can conclude that the thermal outgassing will be reduced much faster in a tubular vacuum chamber conditioned with photons than in a vacuum chamber with an ante-chamber.
- Therefore, the ante-chamber design:
 - does indeed increase the vacuum conductance,
 - but this does not help in reducing the outgassing.
 - After 100 Ahr of beam conditioning the total outgassing along a tubular vacuum chamber is the same or lower than that along a vacuum chamber with an antechamber, and the SR absorbers make a gas load on the pumps even larger for an antechamber design.
 - Since the antechamber design is more expensive, it worth to explore only if it is necessary to deal with other problems such as beam induced electron multipacting and electron cloud.

Pressure along the arc: inside a stainless steel tube

after 100 Ahr beam conditioning:

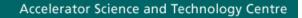
 S_{eff} = 200 l/s every 5 m



Pressure along the arc: inside a NEG coated tube

after 100 Ahr beam conditioning:

 S_{eff} = 20 l/s every 30 m


Main result of the modelling

• NEG coating of vacuum chamber along both the arcs and the wigglers as well as a few tens meters downstream of both looks to be the only possible solution to fulfil vacuum requirement for the ILC dumping ring

Ideal vacuum chamber for vacuum design:

- Round or elliptical tube
 - Cheapest from technological point of view
- No antechamber
 - Beam conditioning is most efficient
 - Easy geometry for TiZrV coating
- NEG coated
 - Requires less number of pumps with less pumping speed
 - 180°C for NEG activation instead of 250-300°C bakeout
 - Choice of vacuum chamber material (stainless steel, copper and aluminium) does not affect vacuum in this case
 - Residual gas CH₄ and H₂ (almost no CO and CO₂)

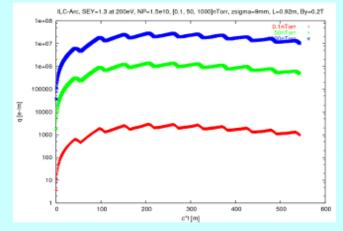
O. Malyshev. Vacuum Systems for the ILC Damping Rings. EUROTeV Report-2006-094.

How the e-cloud affect vacuum

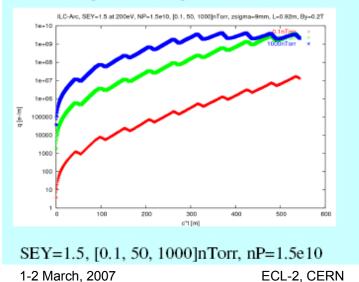
- The electron flux ~10¹⁶ e⁻/(s·m) with E≈200 eV will desorb approximately the same gas flux as the photon flux of ~10¹⁸ $\gamma/(s \cdot m)$.
- If the electron stimulated desorption if larger than photon stimulated desorption, that should be considered in vacuum design and conditioning scenario.
- Gas density will increase => gas ionisation will also increase =>
 - Electrons are added to e-cloud
 - lons are accelerated and hit the wall of vacuum chamber => ion induced gas desorption and secondary electron production
- Gas density increase may change e-cloud density.

How the e-cloud affect vacuum

- The electron flux [e⁻/(s·m)] and average energy [eV] and total power [W] of electrons are required for gas density calculations and vacuum design.
- Groves and antechamber will increase the necessary conditioning time and complicate the TiZrV coating. It is more expensive than NEG coated tube.
- Electrodes and insulating materials may dramatically increase das density in a vacuum chamber due to thermal, photon, electron and ion induced gas desorption.
 - Choice of material and design must be UHV compatible.
 - The NEG coating might be difficult, impossible or inefficient, which will lead to much more expensive vacuum design.
 - If the 'e-cloud killer' requires a vertical space it will require larger magnet gap and more expensive dipoles.


If e-cloud in too large in a round tube

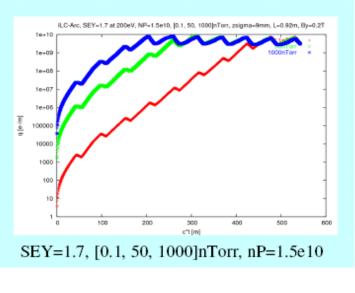
- What is the main source of electrons:
 - Photo-electrons
 - Geometrical: reduction or localisation of direct and reflected photons
 - Surface treatment, conditioning, coating
 - Secondary electrons
 - All possible solution discussed during this workshop
 - Gas ionisation
 - Surface treatment and conditioning
 - Low outgasing coating
 - Better pumping
- Good solution against Photo-electrons or Secondary electrons might led to higher gas density and higher gas ionisation, and vice versa.



Example 1: W. Bruns's results

Fixed SEY, varying Gaspressure and Bunchpopulation, no PEY

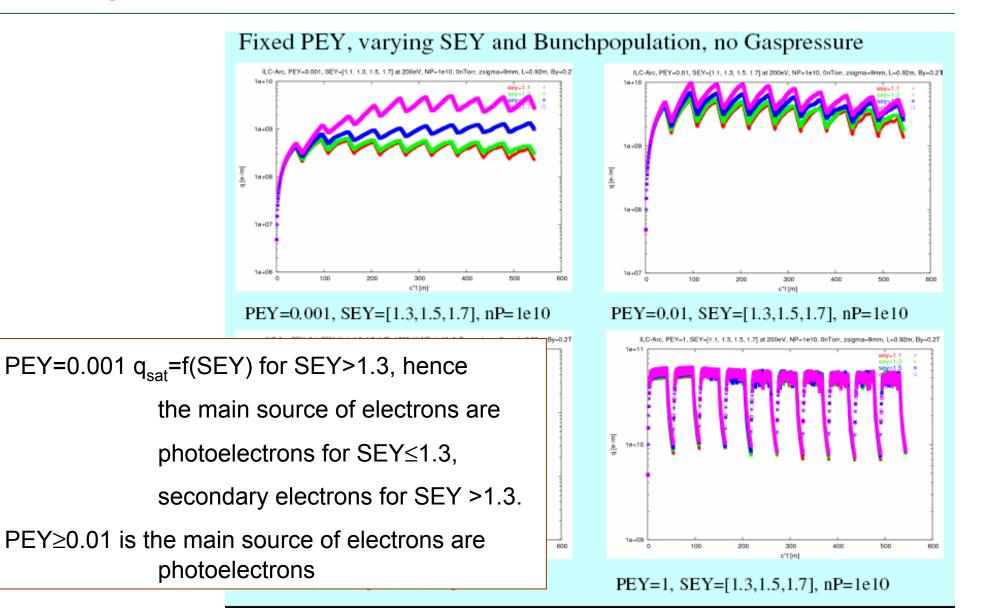
SEY=1.3, [0.1,50,1000] nTorr, nP=1.5e10


SEY=1.3 $q_{sat} \propto P$,

here gas ionisation is the main source of

electrons but q_{sa}t<q_{max} for ILC DR

SEY≥1.5 qsat>qmax for ILC DR,


here SEY is the main source of electrons

O.B. Malyshev

Example 1: W. Bruns's results

