modeling of electron cloud

- effect of beam field on PEY and SEY
- effect of magnetic field on PEY
- effect of ions on e-cloud
 - microwave diagnostics, long fluctuating tails
 - quasi-bound e-: much higher cross section
 - RHIC observation of phase transition
 - hypothesis: ions slow down electron loss
 - SPS e- cross talk between cycles
 - ion reflection? (Ubaldo) -> any data?
 - kV not sufficient in SPS (charge up)!?
 - better model of clearing electrode

modeling of electron cloud - 2

- ➤ grooves
 - effect of surface roughness?
 - PEP-II observations at moderate current (no multipacting yet)
 - surface area effect on photon interception?
 - type of surface roughness (steep or shallow)
 - grooves may slow down scrubbing, be bad for vacuum design (trap contaminants, complicate coating)
 - exact field for grooved surface, e.g. shielding by the grooves (Joachim)
 - distinguish between PE and SE, using mask or wiggler field? or beam current?

modeling of electron cloud - 3

- adding highly inhomogeneous magneto-static field to grooves, i.e. via permanent magnets??
- SE energy spectrum for copper vs. stainless steel vs. Al - factor 10 in fraction of re-diffused e- ?
- > angular dependence of SEY; SE angular spectrum

➢ low-energy SY yield: 100% or 50%?

- anywhere between 0 and 100% (Bob Kirby)
- Roberto Cimino et al PRL ~100%
- SPS benchmarking (Daniel) ~50%
- > displacing the beam vertically could help
 - sextupole field from e-cloud in dipole at PEP-II
- broadband resonator model not adequate (extension by Perevedentsev, 2002)

modeling of electron cloud - 4

- build-up code benchmarking OK same result for same model
- > need more measurements
- > use NEG or other stable material for benchmarking

enamel

- > measure SEY & PEY (Roberto?)
 - is this important? charge up helps
 - naked enamel OK for multipacting?!
- study e- suppression in simulations
- > study suppression with **resonator** (in a few weeks)
- > study suppression with beam (CESR?)
- > calculate and measure beam impedance
 - electric properties of enamel
 - naked, resistive, or metallic electrode?
 - heat load
- ➤ mechanical forces OK?
 - can be fit into SPS magnets?!

air baked Cu (5 min hot venting to air with open ends)

Iong-term stability

beware of naming confusion

radical injection

➢ should be OK

➤ freon

- could have harmful effect on vacuum pumps

- could be done at SLAC?

permanent electric fields

> electrete (Fritz Caspers)

grooves

device for in-situ grooving?! (Elena S.)

NEG (or TiN, air baking, scrubbing...?)

- > are we sure about long-term stability of TiN?
 - slow transformation to Ti_xO_y
 - multipacting in coated PEP-II chambers
- NEG long-term behavior w/o activation?
- self-activation by photons and e-?
- resonator measurement of NEG impedance
- > NEG resistivity
- heating of clearing electrode
- ZrN instead of TiN (Joerg Wendel)!? more stable
- TiN sensitivity to stochiometry (pressure, SEY)

pros and cons

clearing electrode	NEG
install once	regular activation needed
never demonstrated??	demonstrated in many machines
for ions: shaking + clearing helpful	good for vacuum
efficient for ISR coasting beam e-	long-term stability?
impedance?	

e-cloud behavior

e-cloud for e- beams at ANKA & CESR
top up operation at constant current
hysteresis, two stable fix points
route to chaotic behavior