Accelerator physics R&D at a mid-scale (10-100 GeV) facility

Carl B. Schroeder

BELLA Center Lawrence Berkeley National Laboratory

DESY, Hamburg, 22-24 March

Work supported by the U.S. DOE, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231

Strong energy frontier interest in 10+ TeV cme

Snowmass: US particle physics community planning exercise to identify and document a scientific vision for the future of particle physics in the US. Provides input to P5 (Particle Physics Project Prioritization Panel).

https://snowmass21.org/accelerator/

Accelerator Frontier Snowmass Report:

"While a Higgs/EW factory at 250 to 360 GeV is still the highest priority for the next large accelerator project, the motivation for a TeV or few TeV e+e- collider has diminished. Instead, the community is focused on a 10+ TeV (parton c.m.e) discovery collider that would follow the Higgs/EW Factory."

"At the energy frontier, the discovery machines such as O(10 TeV c.m.e.) muon colliders have rapidly gained significant momentum."

R&D on new technologies required to reach energy frontier

Challenging energy scale requires emphasis on

- R&D on new technologies required to provide viable options at 10+ TeV (parton cme)
 - > Leptons offer clean collisions with strong physics potential
 - Similar physics is anticipated to be accessible with muon or e+e- machines
 - > gamma-gamma colliders likely access significant portion of physics, analysis less complete
- New technologies must reduce power consumption
- With multi-decade timeline, important to leverage nearer-term applications (HEP, basic science, medicine, industry, security, etc.) to provide motivation for **new test facilities** for technology development

Advanced and novel accelerators (wakefield accelerators) have been focused on demonstrating and developing high-gradient plasma and structures and high-quality beams. New beam test facilities are required to test and develop auxiliary collider systems.

Wakefield accelerator (WFA) based designs for 15 TeV

"Report of the Snowmass 2021 Collider Implementation Task Force" arXiv:2208.06030

Wakefield accelerators (WFAs) for 10+ TeV

• Similar high-level parameters can be achieved with LWFAs, PWFAs, and SWFAs.

Advantages of WFA for HEP applications:

- Ultra-high gradient
- Short bunch lengths (reduced beamstrahlung and power savings)

Reduction of power consumption is main challenge of future colliders

- Use round beams to increase luminosity/power (operates in highbeamstrahlung regime at >TeV); Luminosity spectrum is degraded
- Eliminate beamstrahlung using **YY** collider (also removes need for e+)

Example: laser-plasma-based collider concept

"Linear colliders based on laser-plasma accelerators" arXiv:2203.08366

- Design (optimizing operational plasma density, ~10¹⁷ cm⁻³) yields 5 GeV/stage (200 stages/linac for 1 TeV):
- Short (8.5 µm rms) bunches; shaped current distribution
- Time structure at IP: single bunches, separated by ~20 µs (~50 kHz)

R&D in AAC community:

- Plasma accelerator development: controlling beam phase space; optimizing laser- and beam-plasma interaction
- Laser technology development: high-peak and high-average power lasers with high efficiency.

R&D toward a collider at existing test facilities

Anticipated HEP-focused demonstrations at existing beam test facilities in the near term (circa 2025):

Some examples:

- Plasma repetition rate limits characterized @ FLASHForward
- Laser-driven staging of multi-GeV cells with high capture efficiency @ BELLA
- Beam driven 10 GeV stage with mm-mrad emittance, percent energy spread, high-efficiency @ FACET-II

AWA

Argonne

- 500 MeV SWFA demonstrator module @ AWA
- and others...

Near- and mid-term (non-collider) applications will establish technology, and benefit future colliders:

- Compton MeV photons
- Plasma-accelerator-driven FELs
- Nonlinear QED studies
- High-brightness electron injectors
- • •

New facilities coming soon to develop technology and applications

BELLA

R&D on LWFA staging underway at Berkeley Lab

stage II:

laser 2

discharge capillary

Steinke et al. Nature (2016)

 Multi-GeV (with high capture efficiency) staging experiments are planned at 2nd beamline (independent compressors) on BELLA PW laser (commissioning completed Fall 2022)

laser 1

diplole magnet

lanex screen

lanex screen

(removable)

Intermediate energy ANA demonstration facility

Recommendation of AF6 (Advanced Accelerators) Snowmass Report:

"A study for a collider demonstration facility and physics experiments at an intermediate energy (c.a. 20-80 GeV) should establish a plan that would demonstrate essential technology and provide a facility for physics experiments at intermediate energy. "

- Positron acceleration •
- Cooling

collider subsystems.

٠

٠

٠

٠

٠

٠

Injector

"Advanced accelerator linear collider demonstration facility at intermediate energy" arXiv:2203.08425

ALEGRO 2023

Electron linac at 10-100 GeV

Use photo-cathode (GaAs/GaAsP superlattice) with near full e- polarization. -> study polarization preservation in plasma Using RF photo gun methods to achieve: 0.1um normalized emittance Develop beam current profile shaping

injected

Electron accelerator

e⁻ -beam

Coupling

between stages

Bunch compressors: tens micron beam length for plasma linacs

OR

Plasma-based injection, density gradient or ionization injection (plasma photocathode),

<0.1um achievable

Hidding et al., PRL (2012) Schroeder et al., PRAB (2014) Xu et al., PRAB (2017)

ANA stage R&D:

- High-rep rate coupling (plasma mirrors for laser drivers)
- High-rep rate plasma targets
- Alignment techniques to manage tolerances
 - → High gradient → high frequency (Ez~ ω_p) → (sub-)um/fs spatial/temporal scales ← G. White "ti

BDS and FF:

Self-guided stage providing high-gradient, high-charge, and high-efficiency acceleration

Laser: U=50 J, λ =0.8 um, a₀=4.5, k_pL=2.27, k_pw₀=4.02,

Plasma: $n_0 = 4.6 \times 10^{17} \text{ cm}^{-3}$, stage length = 3.1 cm, linear taper (+74%)

Bunch: near-parabolic current profile; wake overloading to minimize energy spread [positive energy chirp imparted initially (overloading) compensated during acceleration \rightarrow minimum energy spread achieved at the end of the stage]

 $\Delta W_{bunch} = 3.53 \text{ GeV} (115 \text{ GV/m peak})$ Energy spread = 0.09% $Q_{bunch} = 1.09 \text{ nC}$ Wake-to-bunch transfer = 40% Laser driver depletion = 20%

Note on transverse stability: ion motion occurs for few GeV, sub-micron emittance e-beams; mitigates hosing instability Mehrling et al., PRL (2018) Schroeder et al., JINST (2022)

Electron plasma density

Tens of GeV linac \rightarrow cascading a tens of stages

Laser plasma accelerator staging

Laser driver technology R&D required for collider

Laser drivers:

- Requires significant R&D to reach • collider parameters: ~10J, ~100fs class, ~50kHz, high wall-to-laser efficiency
- Two promising laser architectures: •
 - Coherent combination of fiber lasers (1 um). ~50% wall-to-laser efficiency; R&D at Jena, Michigan, LBNL, LLNL, et al.
 - Tm:YLF (1.9 micron) (4x as many LWFA stages). R&D at LLNL

R&D on fiber laser combining at Berkeley Lab

Concept: Use high efficiency, high average power fiber lasers, and add them coherently for high pulse energy

Carl B. Schroeder – Berkeley Lab

ALEGR<u>O 2023</u>

Achieved to date on coherent combining fiber lasers

- 100 pulses can be stacked temporally to single pulse with 8 cavities
- Demo 81 pulses, and achieved full fiber energy extraction (>10 mJ) at U. Michigan

In addition, must demo high power compressor, optics, & laser diagnostics

Combined eight, 100fs beams with 90% efficiency

Combined 81 beams (low power, demo phase control) with single combiner

T. Zhou et al. Optics Letters 21, 4422 (2017)

• 3 channels spectrally combine to 42 fs

S. Chen et al. Optics Express (2023)

> Next step (FY23/24): 27 spatial beam, 81 temporal pulses, 3 spectral bands (200mJ, 1kW)

ALEGRO 2023

T. Zhou et al. Optics Express 23, 7442 (2015)

Facility footprint

Beam delivery system R&D for future ANA colliders

ILC Beam Delivery System (BDS)

BDS is much longer than linac for wakefield colliders.

• R&D is needed!

BDS energy scaling: "CLIC-style" BDS system

Beam dump / fixed target experiments

With single electron linac:

Beam dump/fixed target experiments to investigate/detect rare processes, dark sector searches

Beamstrahlung studies at mid-scale facility

High-power (multi-PW), high-intensity laser system

Beamstrahlung studies using high power laser system

Test high-beamstralung regime using intense laser field scattering with beam to mimic beam self-fields in collider.

Example:

Beamstrahlung parameter Y~10 can be achieved for 50 GeV beam scattering with a 10²² W/cm² laser

Mid-scale energy facility allows exploration of nonlinear QED with quantum parameter >>1 to access SF-QED interaction regimes.

See next talk, M. Zepf "Non-linear QED"

Two electron linacs: gamma-gamma collider

ALEGRO 2023

e+e- collider demonstration facility

Staged approach for mid-scale facility

Carl B. Schroeder – Berkeley Lab

ALEGRO 2023

21

- Energy frontier particle physics community desires 10+ TeV cme
- Wakefield accelerators (LWFA, PWFA, SWFA) have made tremendous progress, but current beam test facilities are not focused on collider systems R&D (and acceleration at current facilities limited to 1-10GeV, low average power).
- To develop technology for collider application, there is a need for a mid-scale (10-100 GeV) facility to test key collider systems.
 - Main motivation is advanced accelerator R&D
 - Opportunities science

Thank you