

Strong Field QED Current Experiments and Future Possibilites Matt Zepf Helmholtz Institute Jena and University of Jena

Helmholtz Institute Jena

Quantum Vacuum

- What do we mean by the Quantum Vacuum?
 - Fluctuations around a mean of Zero for particles and fields.
- Linear phenomena of the quantum vacuum
 - Lamb Shift
 - Casimir effect
 - Spontaneous Emission/Parametric Fluorescence
- Some of the most fundamental predictions have not been tested
 - Photon/Photon Scattering (Violation of the superposition principle)
 - Pair Production in Vacuum
 - Trajectory of an electron in an electromagnetic field

www.hi-jena.de

The quantum vacuum – an optical medium

• Work performed on each Lepton over Compton wavelength corresponds to electron restmass

$$W = \lambda_c e E_{cr} = \frac{\hbar}{mc} \times e E_{cr} = mc^2$$

- At this point our vacuum fluctuations become real
- Effects become comparable to single electron
- Corresponding Intensity: I_{cr}~10²⁹Wcm⁻²
 - Below this strongly suppressed

Achieving the Critical Field – The Boosted Frame

- The strength of electric and magnetic field increases in the boosted frame of reference.
 - Energy is conserved
 - Length contraction leads to higher energy density
 - Field strengths increase
 - Equivalent factor χ_{γ} for photon/photon collisions
- Critical field can be reached

The field strength parameter

$$a_0 = \frac{eE}{mc\omega_0}$$

- Familiar in laser physics as normalised vector potential
 - Relativistic threshold: Restmass energy gained over one wavelength
 - $a0 = \xi \implies$ Same paramter, different name
- Strong Field QED:
 - a0 ~ Number of laser photons absorbed per Compton wavelength

$$\Delta \mathcal{E} = eE\lambda_c = a_0\hbar\omega_0$$

Wide Parameter Range Accessible

- Currently available e-beam energies: 2-17 GeV
 - 47 GeV at now decomissioned SLAC
- a0 > 100 possible at PW
 - Not (currently) concurrently available

Fundamental phenomena accessible

Accessible phenomena < E_{cr}:

- Vacuum polarisation effects Vacuum Bi-refringence Quantum Reflection 4-Wave mixing
- Non-linear Compton scattering
- Radiation Reaction effects
- Linear Vacuum Pair Production

Accessible phenomena ~ E_{cr} :

- Non-linear Pair Production
- Non-perturbative Compton Scattering

Radiation Reaction

What is the correct equation of motion of a charged particle?

- Without radiation reaction, Lorentz force $\overline{\mathbf{D}}$

$$F = e(\mathbf{E} + \mathbf{v} \times \mathbf{B}) = m\mathbf{a}$$

- Classical radiation reaction: Lorentz Abraham

$$m\mathbf{a} = \mathbf{F_{rad}} + \mathbf{F_{ext}} = \frac{2}{3} \frac{q^2}{4\pi\epsilon_0 c^3} \frac{\delta \mathbf{a}}{\delta t}$$
$$\mathbf{F}_{ext} = e(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \qquad \mathbf{F}_{rad} = \frac{2}{3} \frac{q^2}{4\pi\epsilon_0 c^3} \frac{\delta \mathbf{a}}{\delta t}$$

At high intensites:
Quantum Effects - which model is correct?

Pair Production

Annihilation a) and it's inverse, b) linear Breit-Wheeler Pair Production

These processes are analogous to ionisation/recombination in atoms:

Three distinct approaches possible (as in atoms):

- 1) linear ionisation (photon/photon collision)
- 2) Static field ionisation
- 3) Multi-photon/Tunneling processes

Pair production processes

Experiments: Past, Present, Future

FIG. 4. Dependence of the positron rate per laser shot on the laser field-strength parameter η . The line shows a power law fit to the data. The shaded distribution is the 95% confidence limit on the residual background from showers of lost beam particles after subtracting the laser-off positron rate.

- First non-linear QED Experiment
 - χ<1
 - Perturbative regime
 - Pair production in electron-laser interactions

Gemini Experiments

- Radiation reaction experiments in χ <1
- First ,all-optical ,

K Poder et al. Physical Review X 8 (3), 031004 (2018) JM Cole, et al, Physical Review X 8 (1), 011020 (2018)

E320 @ FACET II

- Only SFQED facility currently operational
 - $\circ~\chi$ ~1 -reaches non-perturbative regime
 - electron laser modes
 - Radiation reaction and pair-production
 - Current status: ,first light' on diagnositics

HI JENA Helmholtz Institute Jena

E320 @ FACET

First runs underway, first data on detectors!HI JENA

Helmholtz Institute Jena

CALA (LMU/Jena/Düsseldorf)

DFG research group 2783

http://www.quantumvacuum.org/

- γ -LASER and laser-laser experiments
- First vacuum pair experiment

HI JENA Helmholtz Institute Jena

Effective Pair Rate@0.1 Hz

LUXE

- Located at EU XFEL
 - 300TW, 17 GeV
 - a0>20, χ>4

LUXE (Laser Und XFEL Experiment)

- High precision experiment in the non-perturbative regime
 - χ >>1
 - \circ γ -laser and electron laser modes
 - 10Hz, 24 Hour data taking
 - XFEL linac performance
 - Currently awaiting funding decision

Relevance/Future Experiments

- Future Linear Collider
 - χ>10
 - Radiation Reaction critical to accurate modelling
 - Beamstrahlung losses
- QED cascades
 - $_\circ~$ Pair plasmas resulting from high χ
 - Astrophysical objects
- $\chi >>>1 => \alpha \chi^{2/3}>1$
 - Ritus/Narozhny conjecture

(see Fedotov, Ilderton, King, Karbstein, Seipt, Taya, Torgirmson, Phys. Rep 2023m Fedotov J. Phys.: Conf. Ser. 826, 012027 (2017))

- Full breakdown of perturbative approach
- Loop corrections no longer small

Plasma wakes can reach new regimes

Summary

- SFQED is experimentally accessible with current generation of lasers and particle beams
 - Experimentally not tested
 - Collider and Astrophysically important
- Competing Experiments in $\chi^{\sim}1$ regime
 - RF-Accelerator + laser
 - ,All-optical'
- LUXE a SFQED precision experiment
 - requires large number of beam crossings
- χ>>>1
 - Unexplored regime theoretically challenging HI JENA

Helmholtz Institute Jena

www.hi-jena.de