High-repetition-rate beam drivers and plasma sources

Richard D'Arcy

Group Leader for Beam-Driven Plasma Accelerators | FLASHFORWARD Coordinator

DESY. Accelerator Division

ALEGRO Workshop March 23rd 2023

The desire for high-energy particle accelerators

Radio-frequency cavity

Charge-density wave in a plasma

To first order the particle energy at an accelerator facility defines its discovery reach

> Free-electron lasers: energy → wavelength

> *High-energy physics*: centre-of-mass energy

> Therefore higher energy is often desired but conventional technology is limited in accelerating gradient due to electrical breakdown

> Plasma-wakefield accelerators offer a route to higher energies with smaller facilities due to O(GV/m) gradients

Our customers: High-energy-physics (and photon-science) needs

> Let's say that we could produce 500 GeV beams tomorrow, what else would we need to do?

> The luminosity demands that certain properties be maximised/minimised (similar demands for integrated brightness at FELs):

Our customers: High-energy-physics (and photon-science) needs

> Let's say that we could produce 500 GeV beams tomorrow, what else would we need to do?

> The luminosity demands that certain properties be maximised/minimised (similar demands for integrated brightness at FELs):

Selected results:

Litos et al., "High-efficiency acceleration of an electron beam in a plasma wakefield accelerator", **Nature** (2014)

Wu et al., "High-throughput injection-acceleration of electron bunches from a linear accelerator to a laser wakefield accelerator", Nat. Phys. (2021)

Lindstrøm et al., "Energy-spread preservation and high efficiency in a plasma-wakefield accelerator", **Phys. Rev. Lett.** (2021)

Pompili et al., "Energy spread minimisation in a beam-driven plasma wakefield accelerator", Nat. Phys. (2021)

Lindstrøm et al., "Preservation of beam quality in a plasma-wakefield accelerator", **under review** (2023)

Page 4

High-average-power requirements for linear colliders

> We are many orders of magnitude away from where we need to be in terms of bunches per second and average power...

>... but why?

High-average-power requirements for linear colliders

>... but why?

- >Energy → scalable staging to high energy remains an open challenge (see Carl L's talk)
- > Other research priorities \rightarrow solving other open challenges in the field applicable to low rep. rate
- > Other application goals → many facilities in Europe are motivated by application to photon science
- > Unknown limits → the physics effects that may limit/permit high rep. rate are currently unknown/ undefined

าร

Defining the repetition-rate upper limit

What defines the minimum inter-bunch separation in metallic cavities?

- E.g. X-band (~12 GHz) normal-conducting accelerating cavities
- > Minimum possible separation is ~ 80 ps.
- > Long-range transverse wakefields induced in the metallic cavitie they lead to emittance blow-up.
- > Actual separation set at **0.5 ns** i.e. 2 GHz.

> Long-range transverse wakefields induced in the metallic cavities from an acceleration event live longer than this and must be avoided as

Equivalent effect in plasma accelerators is long-term plasma motion

- achievable repetition rate

R. D'Arcy et al., Nature 603, 58-62 (2022)

point of recovery

ns (for experimental settings)

> Recovery time defined as the separation at which all three experimental signals are consistent with zero to within experimental uncertainties

- > All residuals consistent with zero at ~63 ns*
- > Equivalent to a repetition-rate upper limit of O(10 MHz)**

*for working point in argon plasma of density ~1E16 cm **if CW operation is permitted by other physics effects/technical limits

Page 9

High-average-power requirements for linear colliders

> We are many orders of magnitude away from where we need to be in terms of bunches per second and average power...

> ... but why?

- **Energy** \rightarrow scalable staging to high energy remains an open challenge (see Carl L's talk)
- > Other research priorities \rightarrow solving other open challenges in the field applicable to low rep. rate
- > Other application goals \rightarrow many facilities in Europe are motivated by application to photon science
- **Some unknown limits** \rightarrow many of the physics effects that may limit/permit high rep. rate are currently unknown/undefined

How do we define the rest?

Two fundamental components of a beam-driven plasma accelerator

Radio-frequency-cavity front end

> Can be either warm or superconducting \rightarrow there are benefits to each

	FEL	Collider	Current
Bunches per second	10 ¹ - 10 ⁶	10 ⁴ - 10 ⁵	10¹ - 10 ⁶
Avg. beam power (W)	10 ¹ - 10 ⁵	106	10¹ - 10 ⁶

Plasma-accelerator stage

> Discharge-capillary plasma stages have been a workhorse in the field for the last ~20 years*

	FEL	Collider	Curre
Bunches per second	10 ¹ - 10 ⁶	10 ⁴ - 10 ⁵	10 ¹
Avg. beam power (W)	10 ¹ - 10 ⁵	106	10 ¹

*ignoring laser- and beam-generated sources in the interest of brevity Page 11

Bunch-train patterns: the path to O(10,000) bunches per second

- Operation in a *pulsed mode* enables higher accelerating gradients and higher efficiencies

Radio-frequency cavities are capable of operating in *continuous-wave* (CW) *mode* \rightarrow different to 'CW' operation in lasers

However, accelerating gradient is limited due to inefficiencies/electrical breakdown \rightarrow larger driver complexes required

	CLIC example
Toperty #1 in the separation Δ_b	dissipation of long-range transverse wakefields
operty #2 -train length <i>n</i> b	balance of RF pulse length, and acceleration field, and electrical breakdowns
toperty #3 alse separation Δ_t	dissipation of the cumulative heating fro each bunch train

DM

ting

Bunch-train patterns: the path to O(10,000) bunches per second

How is the bunch pattern defined in conventional accelerators?

warm radio-frequency accelerating cavities

Property #1

Inter-bunch separation Δ_b

Property #2

Bunch train length n_b

Property #3

Macro-pulse separation Δ_t

Bunch-train-pattern comparison for different technologies

	Plasma accelerator		clc
Inter-bunch separation	<i>O</i> (100 ns)	554 ns	0.5 ns
Bunch-train length	???	726 µs	156 ns
Macro-pulse separation	???	100 ms	20 ms
Max. # of bunches per second	???	13120	15600

> Seemingly compatible with ILC-type superconducting RF... but not with CLIC-type warm RF

Bunch-train-pattern comparison for different technologies

	Plasma accelerator	ic	clc
Inter-bunch separation	<i>O</i> (100 ns)	554 ns	0.5 ns
Bunch-train length	???	726 µs	156 ns
Macro-pulse separation	???	100 ms	20 ms
Max. # of bunches per second	???	13120	15600

- > Example of a staged facility: ~100 m in total length
- > Path-length difference between stages: ~2m = ~6 ns → normal-conducting technology!
- > Total # of stages (in this example) i.e. # of drive bunches per accelerating bunch: 16
- > Inter-bunch separation: 16 x 6 ns = ~100 ns

> Don't exclude any one type of technology just yet!

Bunch-train-pattern comparison for different technologies

	Plasma accelerator		
Inter-bunch separation	<i>O</i> (100 ns)	554 ns	0.5 ns
Bunch-train length	???	726 µs	156 ns
Macro-pulse separation	???	100 ms	20 ms
Max. # of bunches per second	???	13120	15600

Page 16

Building up plasma-accelerator stages to high repetition rate

Radio-frequency-cavity front end

Requirement: increase the bunch-train length

Result: the desired bunches per second

Requirement: manage the increased average power -

Plasma-accelerator stage

		FEL	Collider	Curre
	Inter-bunch sep. (µs)	10 ⁻¹ - 10 ³	10 ⁻¹ - 10 ³	10 -1
┥	Bunch-train length (#)	10 ¹ - 10 ³	10 ¹ - 10 ³	10 º
Ì	Macro-pulse rate (Hz)	10 ¹ - 10 ²	10 ¹ - 10 ²	10 ¹
┥	Bunches per second	10 ¹ - 10 ⁶	10 ⁴ - 10 ⁵	10 ¹
┥	Avg. beam power (W)	10 ¹ - 10 ⁵	106	10 ¹

Returning to the comparison with conventional accelerators

ators* Plasma accelerators

dissipation of long-term plasma motion → O(100 ns)

???

???

*CLIC example

Page 18

Returning to the comparison with conventional accelerators

Plasma accelerators

dissipation of long-term plasma motion → O(100 ns)

goal: similar plasma properties for each acceleration event

goal: plasma source capable of withstanding large heat loads

*CLIC example

Page 19

Challenge: Plasma-electron density decays exponentially on the µs timescale due to **expulsion** and **recombination**

Image credit: Kyrre Ness Sjøbæk

Plasma expulsion from a capillary-discharge plasma source

Plasma-density decay in a open-ended discharge-capillary plasma stage

Challenge: Plasma-electron density decays exponentially on the µs timescale due to **expulsion** and **recombination**

HALHF: Foster, D'Arcy, & Lindstrøm https://arxiv.org/abs/2303.10150

decreases the density

> Challenge: Cumulative heating of the plasma from inefficiencies in the system may modify the wakefield properties

C.A. Lindstrøm et al., Phys. Rev. Lett. **126**, 014801 (2021)

Shot-to-shot stability of beams at FLASHForward

Power-transfer diagram in a plasma accelerator

Plasma evolution as a result of energy deposited on axis by plasma acceleration

Challenge: Cumulative heating of the plasma from inefficiencies in the system may modify the wakefield properties

K. V. Lotov, PRSTAB 6, 061301 (2003)

23

Simulations of how plasma background temperature modifies the plasma-wakefield properties

Challenge: Cumulative heating of the plasma will lead to **cumulative heating of the plasma stage**

Power-transfer diagram in a plasma accelerator

R. Zgadzaj *et al.*, Nat. Commun. **11**, 4753 (2020)

Simulated energy-transport channels after driving a wake

Challenge: Cumulative heating of the plasma will lead to **cumulative heating of the plasma stage**

Image credit: Anthony Gonsalves

Grown-diamond capillary-discharge waveguides at LBNL

Heat-transfer simulation of a liquid-cooled plasma source

Page 25

Challenge: Cooling requirements may be beyond what is achievable with near-future technology

Parameters:

 dP_{cool}/ds : Required cooling rate

 ΔE_d : Driver energy loss

 Q_d : Driver charge

 Q_w : Witness charge

f: Collision frequency

 $L_{\rm s}$: Plasma length

 η_d : Efficiency from driver to wake

 η_w : Efficiency from wake to witness

- E_{7} : Accelerating gradient
- T: Transformer ratio

Challenge: Cooling requirements may be beyond what is achievable with near-future technology

gradient is directly limited by the achievable cooling rate

> ... but are we limited in practice?

$$\frac{-\eta_w}{2} \approx E_z \cdot Q_w f \cdot (\frac{1}{\eta_w} - 1)$$

'space efficiency' 'energy efficiency'
'physics efficiency'

Conclusion: For a certain particle flux (luminosity) and a certain energy-transfer efficiency (sustainability), the acceleration

Challenge: Cooling requirements may be beyond what is achievable with near-future technology

example for average power (per second): 10 GV/m x 1 nC x 10,000 s⁻¹ x (1/0.6 - 1) = 67 kW/m

- ... but the average power in a MHz bunch train will be **x100** the average power over a second at 10 kHz
- $> \dots$ and it may not be possible to 'manage' rapid temperature increases/stresses on the μ s timescale

$$\frac{-\eta_{w}}{2} \approx E_{z} \cdot Q_{w} f \cdot (\frac{1}{\eta_{w}} - 1)$$

'space efficiency' 'energy efficiency'
'physics efficiency'

> CLIC is expected to be able to 'manage' \sim 20 kW/m \rightarrow in the right ballpark but likely using very different cooling schemes

Challenge: Cooling requirements may be beyond what is achievable with near-future technology

- > If we can't boost the cooling rates for plasma stages over those of CLIC, where do we compromise?
- Inter-stage optics dominate the plasma-accelerator length at high energies \rightarrow lower gradients and longer stages?
- does this all necessitate operating the conventional linac at CW? Or
- > **Caveat**: This assumes that all the power makes it to the wall of the plasma stage
- > ...
- This challenge cannot be tackled in isolation \rightarrow iteration loop with attempts to solve the other challenges

$$\frac{-\eta_{w}}{2} \approx E_{z} \cdot Q_{w} f \cdot (\frac{1}{\eta_{w}} - 1)$$

$$\frac{1}{2} \cdot Q_{w} f \cdot (\frac{1}{\eta_{w}} - 1)$$

but does it? Expulsion of power with expulsion of plasma? Do unknown energy-transport channels help us? etc. etc.

Plasma-wakefield accelerators at high repetition rates Summary and outlook

- The recovery time of a plasma-wakefield accelerator indicates compatibility with radiofrequency bunch-train patterns → a great first step... but still just a first step
- > The big challenge now is bridging the up-to-five order-of-magnitude gap from state-of-the-art to what is required
- Many outstanding scientific and technical goals to be reached with an emphasis on simulation tools, driver development, and plasma-source technology
- Schemes discussed here do not utilise high-power lasers but a future linear collider based on novel-accelerator technology will likely be based on both types of technologies e.g. laser drivers and discharge-based stages
- A coordinated international effort from both the LWFA and PWFA communities will be required to solve all the problems in the next decade

Plasma-wakefield accelerators at high repetition rates

Open questions

Beam drivers:

- The necessary beam drivers seemingly exist so it would be sensible to leverage 'shovel ready' designs if possible... But can we fully utilise them in their current/planned bunch-train format?
- If not, do we need to push the conventional community to reimagine how they operate their machines to best conform to our needs?
- > Bunch-train patterns have been the focus here but are the bunch parameters at this repetition rate sensible?

> Plasma stages:

- Can similar plasma properties be reproduced at MHz to enable acceleration of high-rep.-rate bunch trains?
 How hot does the plasma get due to MHz plasma acceleration? And will it substantially modify the plasma
- How hot does the plasma get due to MHz plasm properties?
- Can kW-MW levels of average power left in the plasma stage be managed?
- Do the plasma stages mandate CW operation of the linac? And if so, are CW discharge-generated plasma stages possible?

