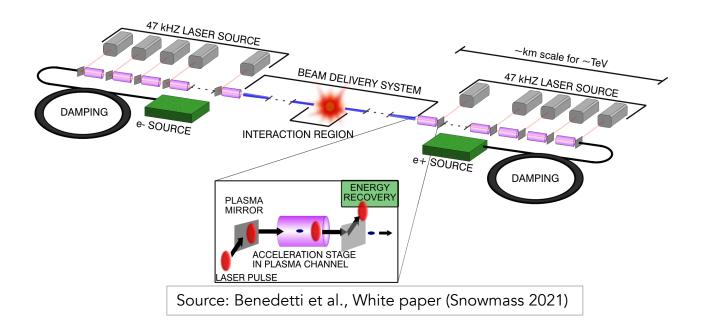
Emittance preservation and required tolerances

for a plasma-based linear collider

Maxence Thévenet – DESY

ALEGRO-2023, DESY, Hamburg, 23/03/2023


Based on

C. A. Lindstrøm & M. Thévenet Emittance preservation in advanced accelerators JINST **17** P05016 (2022)

A plasma-based linear collider needs low emittance

$$\mathcal{L} = H_D \frac{N^2 f}{4\pi \sigma_x^* \sigma_y^*}$$

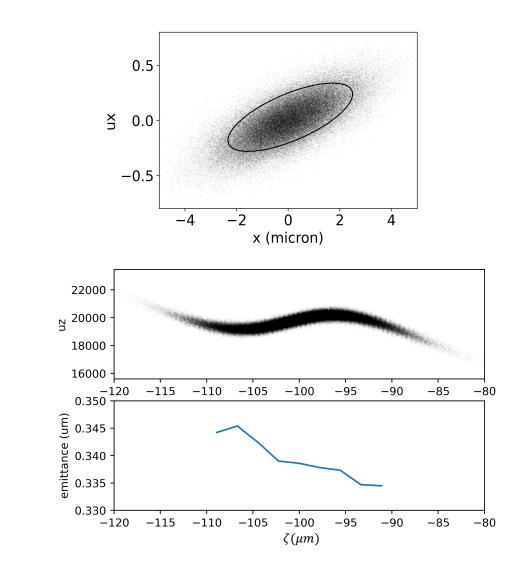
Energy $\mathcal{E} \simeq 0.1 - 15$ TeV Luminosity $\mathcal{L} > 10^{34} cm^{-2} s^{-1}$ Emittance $\epsilon_{x/y} \sim 10 - 100$ nm

Short beams, flat or round beams

W. Leemans and E. Esarey *Phys. Today* 62.3: 44-49 (2009) E. Adli et al. *arXiv:1308.1145* (2013)

Emittance is a measure of the beam quality

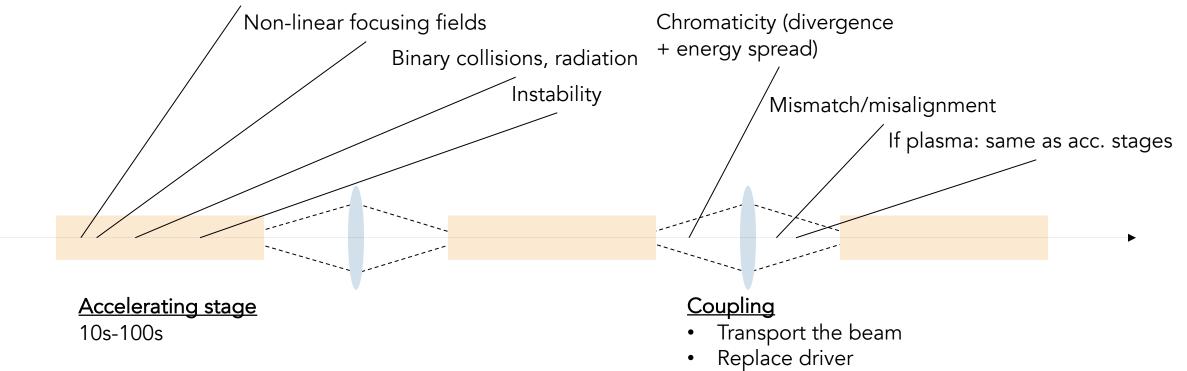
 $u_x = \frac{p_x}{m_e c}$


Normalized emittance
$$\epsilon \equiv \epsilon_n = \sqrt{\langle x^2 \rangle \langle u_x^2 \rangle - \langle x u_x \rangle^2}$$

Trace-space emittance $\epsilon_{tr} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$

Low energy spread limit: $\epsilon_n \simeq \gamma \epsilon_{tr}$

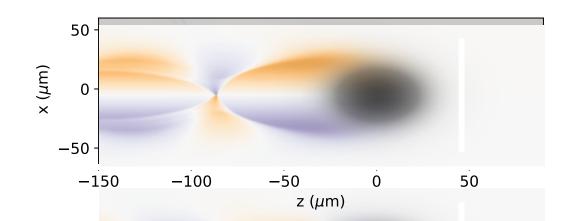
$$\beta = \frac{\langle x^2 \rangle}{\epsilon_{tr}} \simeq \gamma \frac{\langle x^2 \rangle}{\epsilon_n}$$


- Can be preserved in the presence of linear focusing fields
- Projected emittance & slice emittance

Floettmann PRSTAB 6, 034202 (2003)

Sources of emittance growth within a plasma-based collider

Mismatch/misalignement and decoherence


- 1. Energy spread and decoherence
- 2. Non-linear focusing fields
- 3. Hose instability
- 4. Additional sources

Beam dynamics with

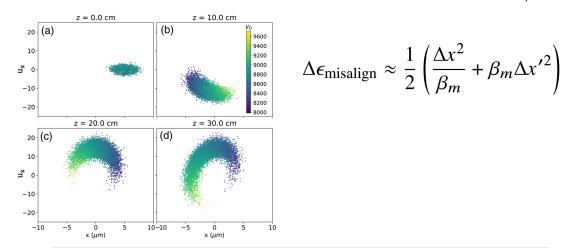
llations

Blowout regime

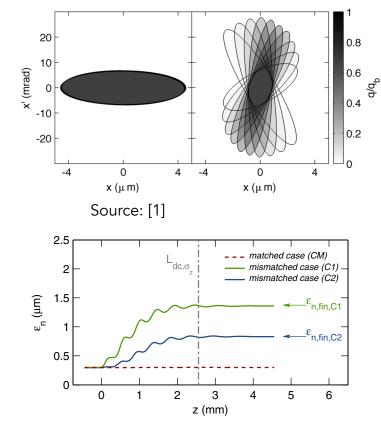
Longitudinal: acceleration: $E_0 = \frac{m_e \omega_p c}{e}$; $\dot{\gamma} \simeq \omega_p$ Transverse: betatron oscillations $\frac{d(\gamma m_e \dot{x})}{dt} = F_x$. Full blowout, linear focusing force $\rightarrow \omega_\beta = \frac{\omega_p}{\sqrt{2\gamma}}$

→ Betatron frequency depends on particle's energy

→ Betatron amplitude $\propto \gamma^{-\frac{1}{4}}$


→ Matching condition, beam envelope does not evolve: $\beta_m = \frac{\sqrt{2\gamma}}{k_n}$ or $\sigma_x = \left(\frac{2\epsilon^2}{\gamma k_n^2}\right)^{1/4}$ and $\sigma_{u_x} = \left(\frac{k_p^2 \epsilon^2 \gamma}{2}\right)^{1/4}$

J. B. Rosenzweig *et al. PRA* 44.10 R6189 (1991)


Mismatch and misalignment result in emittance growth

Mismatch results in envelope oscillations Different energy slices oscillate with different periods (decoherence) This causes in (slice) emittance growth

- Decoherence length $L_{decoherence} = \frac{\lambda_{\beta}}{\sigma_{\gamma}}$
- Saturated emittance $\frac{\epsilon_{\text{sat}}}{\epsilon_{\text{init}}} = \frac{1}{2} \left(\mathcal{M} + \frac{1}{\mathcal{M}} \right)$ $\mathcal{M} = \frac{1}{2} \left(\tilde{\beta} + \tilde{\gamma} + \sqrt{(\tilde{\beta} + \tilde{\gamma})^2 4} \right)$

[1] T. Mehrling et al. Phys. Rev. ST Accel. Beams 15 111303 (2012)
C. A.Lindstrøm et al., Proceedings of IPAC2016 (2016)
M. Thévenet et al., Phys. Rev. Accel. Beams 22: 051302 (2019)
S..Cheshkov, et al., PRSTAB 3: 071301 (2000)

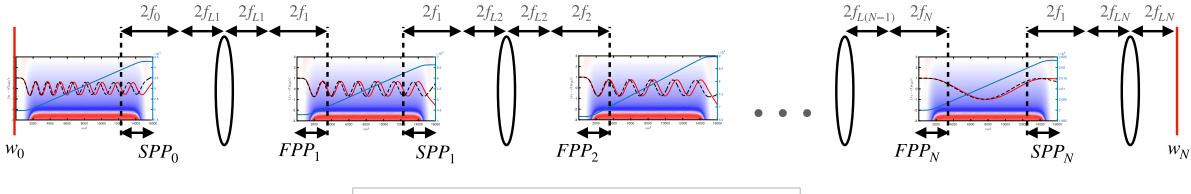
- First stages: full decoherence within 1 stage
- Later stages: (almost) no decoherence within 1 stage (but average emittance growth)
- > 10 nm, μ rad tolerances

Adiabatic ramps mitigate emittance growth due to mismatch

- Adiabatic changes in focusing properties prevent emittance growth
- Ramp length $\gg \lambda_{\beta}$
- Useful for entrance (upramp) or exit (downramp) of plasma stage

$$K(z) = \frac{K_0}{\left(1 + gz\right)^4}$$

• Ramp length unpractical for high-energy beams

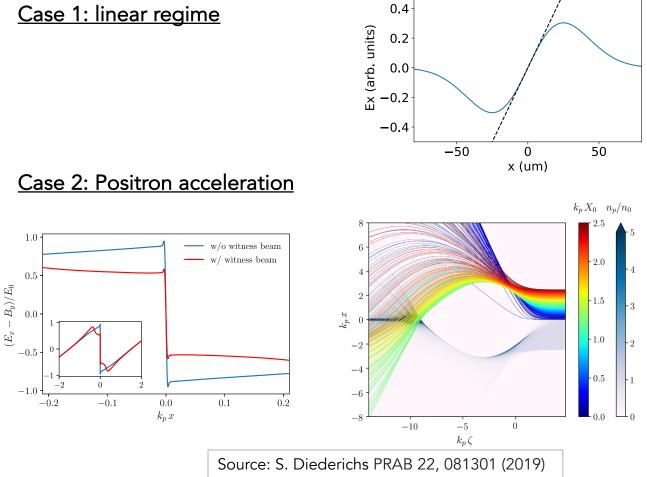


[1] K. Floettmann PRSTAB 17: 054402 (2014)[2] I. Dornmair et al., PRSTAB 18: 041302 (2015)

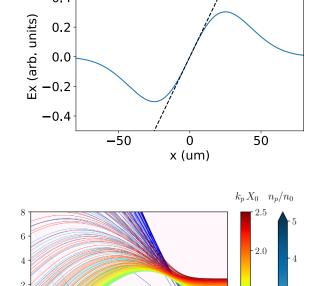
Energy spread is a key factor in this source of emittance growth

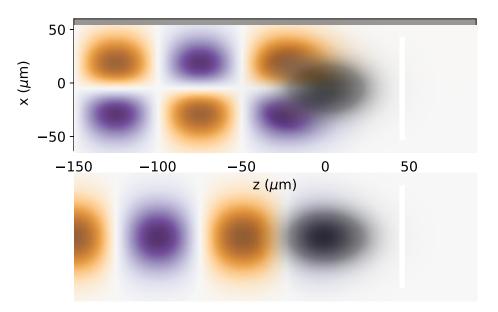
Chromatic focusing and mismatch:

"we find that for initial relative energy spreads below 10^{-3} , energy-spread growth below 10^{-5} of the energy gain per stage and normalized emittance below mm-mrad, the chromatic emittance growth can be minimal "


Source: A. G. R. Thomas & D. Seipt PRAB 24 104602 (2021)

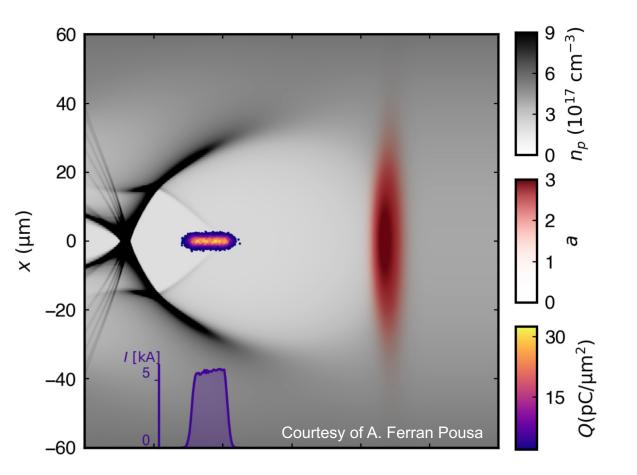
- 1. Energy spread and decoherence
- 2. Non-linear focusing fields
- 3. Hose instability
- 4. Additional sources





Non-linear focusing fields can cause emittal

1/3: Non-linear plasma fields



- (ζ -dependent) Equilibrium is reached, at the price of \geq emittance growth
- Starting from a (non-trivial) matched distribution, emittance can be preserved

Non-linear focusing fields can cause emittance growth

2/3: Response of the plasma electrons: transverse beam loading

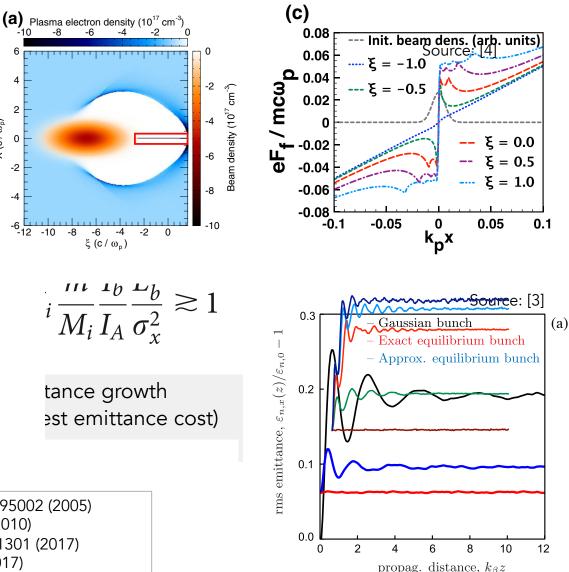
- Linear and non-linear (just not full blowout), plasma electrons can be present in the cavity
- A high-density beam perturbs the electron density
- ζ-dependent and non-linear focusing field
- ightarrow This picture evolves during propagation

Non-linear focusing fields can cause emittance growth

3/3: Response of the plasma ion: ion motion

- Strong beams perturb ions, which create an ion density spike [1]. ٠
- Non-linear, leading to ζ -dependent emittance growth •
- Mitigated with heavier ions
- Bound to happen as $\sigma_{\chi} \propto \gamma^{-1/4}$

Fortunately

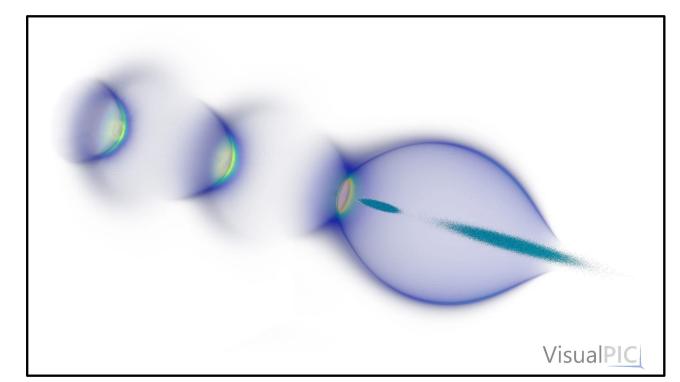

- > A matched beam will see no emittance growth [4]
- Such a beam can be created with adiabatic matching [5] \succ
- Advanced beam profiles (transverse and longitudinal) can preserve ٠
- Such profiles can be achieved & preserved with adiabatic process
- Can these beams be transported? Does this constraint stage design

[1] J. B. Rosenzweig et al., PRL 95 195002 (2005) [2] R. Golizadeh PRL 104, 155001 (2010) [3] C. Benedetti et al., PRAB 20, 111301 (2017) [4] W. An et al., PRL 118 244801 (2017) [5] C. Benedetti et al., Phys. Plasmas 28, 053102 (2021)

X (c / ω_p) 0

Λ

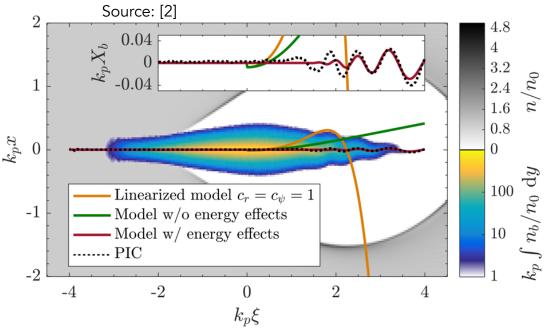
-2


- 1. Energy spread and decoherence
- 2. Non-linear focusing fields
- 3. Hose instability
- 4. Additional sources

Hose instability can lead to catastrophic emittance growth

- Coupled transverse oscillations of beam centroid and wake centroid
- In particular for the driver
- Originally thought dramatic [1,2]
- Similar to beam breakup instability [3]

[1] D.H. Whittum, et al., PRL 67 991 (1991)
[2] C. Huang et al., PRL 99 255001 (2007)
[3] W. K. H. Panofsky and M. Bander RSI 39 206 (1968)


Hose instability mitigation through BNS damping

 $\omega_\beta=f(\zeta)$

[1]: linear regime: saturates as F_x = f(ζ) due to transverse beam loading
[2]: blowout regime: saturates as γ = f(ζ) due to strong chirp (driver)
[3]: Large beam driver for F_x = f(ζ)

[4]: ion motion suppresses it

0.15 W_x/E_0 $k_{p}(x-X_{p})/2$ 0.10 X_{τ} 0.05 η_b (arb. units) W_x/E_0 0.00 X_h -0.05-0.10-0.15Source: [4] -0.2-0.10.0 0.10.20.3-0.3 $k_n x$

V. E. Balakin et al., Proceedings of HEACC1983, 119–120 (1983)
[1] R. Lehe et al., PRL 119 (2017)
[2] T. J. Mehrling et al., PRL 118 174801 (2017)
[3] A. Martinez de la Ossa et al. PRL 121 064803 (2018)
[4] T. J. Mehrling PRL 121: 264802 (2018)

- 1. Energy spread and decoherence
- 2. Non-linear focusing fields
- 3. Hose instability
- 4. Additional sources

Other sources/sinks of emittance within accelerator stage

<u>Coulomb scattering</u>

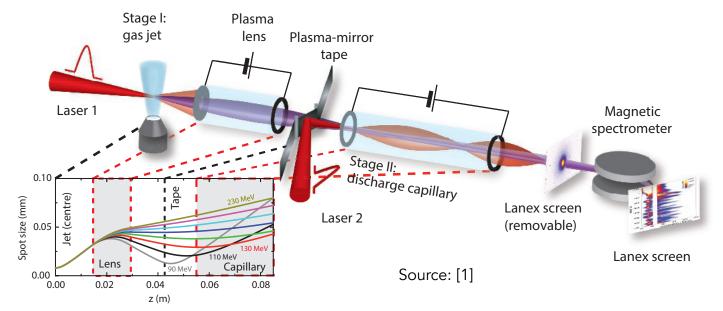
• Increases beam divergence as

 $\frac{d\langle\theta^2\rangle}{ds} = \frac{k_p^2 r_e}{\gamma^2} \left[Z_i^2 \ln\left(\frac{\lambda}{R_a}\right) + 1.78Z(Z+1) \ln\left(\frac{287}{\sqrt{Z}}\right) \right],$

- And related emittance growth (matched beam) $\frac{d\epsilon_n}{ds} = \frac{\beta_x}{2} \frac{d\langle \theta^2 \rangle}{ds} \gamma,$
- Does not depend on matched density
- In practice, prevents the use of high-Z species
- Mitigation: hollow core plasma channels

B.W. Montague Proceedings of CAS-ECFA-INFN pp. 208–218 (1984)
C.B. Schroeder et al., JINST 17 P05011 (2022)
C. B. Schroeder et al., PRSTAB 13, 101301 (2010)
P. Michel et al., PRE 74, 026501 (2006)

Radiation cooling

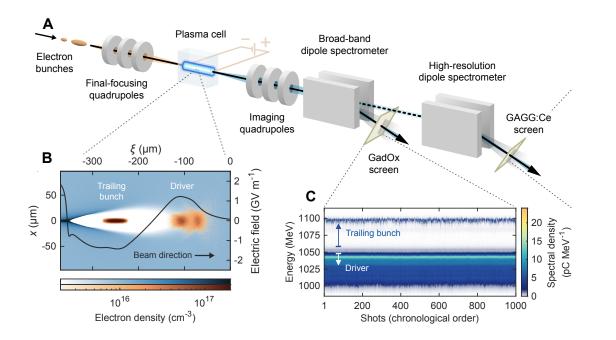

- Particles with larger betatron amplitude loose more energy to synchrotron radiation
- Classical radiation reaction

 $\ddot{x} + \tau_R c^2 K^2 \dot{x} + K^2 c^2 x / \gamma = 0$

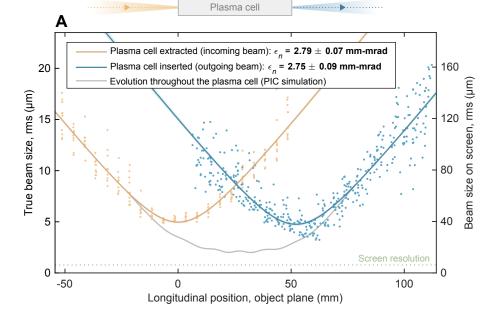
 \rightarrow Growth in energy spread

$$\frac{\sigma_{\gamma}}{\gamma} \propto n_e \gamma^{\frac{3}{2}} \epsilon$$

Inter-stage coupling is also a source of emittance growth


- Relatively large divergence and large energy spread beams
- Sources of emittance growth during coupling:
 - Drift space + energy spread
 - Chromatic focusing $\frac{\Delta(\epsilon^2)}{\epsilon_{\text{init}}^2} = \frac{4L^2}{\beta_m^2}\sigma_{\delta}^2$
 - For plasma-based focusing optics: all of the above
 - Mismatch in the following stage
- Mitigated with advanced beam optics

[1] S. Steinke et al., Nature 530 190 (2016)[2] M. Migliorati et al. PRSTAB 16 011302 (2013)


Encouraging: recent demonstration of emittance preservation

Material provided by Carl A. Lindstrøm, Univ. Oslo

- Experimental setup:1 GeV beam driver with 400 pC charge50 mm plasma cell: peak density ~ $1.2 \times 10^{16} cm^{-3}$ (with ramps)
- Stable operating point: 40 MeV energy gain, 22% transfer efficiency (1.4 GV/m estimated peak field)
- Preservation of: Charge (40 pC), in 41% of shots Energy spread (0.12% FWHM or lower), in 62% of shots Emittance in x dfirection

Lindstrøm, Carl Andreas, et al. "Preservation of beam quality in a plasma-wakefield accelerator." (2022).

Conclusion

- Various effects cause emittance growth, but mitigation methods exist Misalignment/mismatch, non-linear focusing fields, Coulomb collisions, coupling Preliminary studies suggest tolerances on the order of 10 nm and 1 µrad (can be relaxed, e.g. plasma shaping)
- Energy spread can also lead to emittance growth via phase mixing Sources of energy spread must also be monitored Preliminary studies suggest tolerances on the order of 10⁻³ (initial) and 10⁻⁵ (per stage)
- Recent results show encouraging results
 - Hose instability can be mitigated, with a potential cost on emittance/shaping Emittance preservation in a full plasma stage was demonstrated
- > Interplay between different effects would need to be scrutinized
 - Understanding and mitigation methods for separate sources of emittance growth Coupling & transversely tailored profiled; coupling and longitudinally-tailored profile; ...

Thank you for your attention

