
Emittance preservation and required tolerances
for a plasma-based linear collider

Maxence Thévenet – DESY

ALEGRO-2023, DESY, Hamburg, 23/03/2023
Based on

C. A. Lindstrøm & M. Thévenet
Emittance preservation in advanced accelerators 
JINST 17 P05016 (2022)



Page 2

A plasma-based linear collider needs low emittance

8

FIG. 2. Schematic of an LPA-based linear collider.

TABLE II. High-level electron-positron collider parameters

Center-of-mass energy [TeV] 1 3 15
Beam energy [TeV] 0.5 1.5 7.5
Luminosity [1034 cm�2 s�1] 1 10 50
Particles/bunch [109] 1.2 1.2 1.2
Beam power [MW] 4.4 13 65
RMS bunch length [µm] 8.5 8.5 8.5
Repetition rate [kHz] 47 47 47
Time between collisions [µs] 21 21 21
Beam size at IP, x/y [nm] 50/1 10/0.5 4/0.25
Linac length [km] 0.22 0.65 3.3
Facility site power (2 linacs) [MW] 105 315 1100

Note that initial studies indicate that beam depolariza-
tion during the acceleration in plasma accelerators is low
for collider-relevant beam emittances and fulfills the re-
quirements for high energy physics experiments [49].

In Table II the stated linac length is for each arm
of the accelerator. The AC power listed in Table II
is for acceleration in both of the two linac arms. The
overall wall-to-laser e�ciency was assumed to be 50%.
This laser e�ciency is challenging, but recent R&D (see
Sec. VB) indicates that this is technically possible by co-
herent combining of fiber lasers with electrical-to-optical
e�ciency of the diode-pump lasers ⇠65%, the optical-
to-optical e�ciency of the fiber lasers ⇠90% (owing to
the low quantum defect), and the e�ciency of combin-
ing/stacking fibers ⇠85%.

B. Example: gamma-gamma collider withp
s = 15 TeV

In this section we present an example of a �� collider
using electron beams accelerated by LPAs in the non-
linear regime. There are several regimes of laser-driven
plasma acceleration that may be accessed based on the
intensity of the laser pulse. Section IVA presents collider
designs based on operation in the quasi-linear regime.
For high laser intensities, the LPA can operate in the bub-

TABLE III. LPA stage laser and plasma parameters, oper-
ating in the nonlinear bubble regime

Laser pulse energy 50 J
Laser (FWHM intensity) pulse duration 70 fs
Laser spot size 31 µm
Laser strength parameter, a0 4.5
Laser pulse peak power 0.43 PW
Laser wavelength 0.8 µm
Plasma density 4.6⇥ 1017 cm�3

Plasma cell length 3.1 cm
Bunch charge 1.2 nC
Bunch number 7.5⇥ 109

RMS beam length 2.2 µm
Loaded accelerating gradient 117 GV/m
Particle energy gain per stage 3.2 GeV

ble regime, where (almost) all the electrons are expelled
by the laser ponderomotive force, forming an ion cavity
co-propagating behind the laser. In the bubble regime,
the accelerating field is independent of the transverse po-
sition and the focusing field is linear with respect to the
transverse coordinate and independent of the axial posi-
tion (conserving the electron beam transverse normalized
rms emittance). Note that the transverse fields in the ion
cavity are defocusing for positrons; hence, stable positron
acceleration is problematic in the nonlinear regime in a
uniform plasma. Wakefield excitation in plasma columns
have been proposed for modifying the wakefield to allow
for positron focusing and acceleration [50]. In the bub-
ble regime, the laser e↵ectively creates a plasma channel
and can self-guide over a distance corresponding to many
Rayleigh ranges.
Table III shows an example of single-stage LPA param-

eters operating in the bubble regime. This single-stage
LPA example is based on PIC modeling of the nonlinear
laser-plasma interaction [51]. The laser energy depletion
at the end of the stage is 20%. (In principle, the major-
ity of the remaining laser energy could be recovered with
a photo-voltaic.) The wake to beam energy e�ciency of
this example is 43%.

Source: Benedetti et al., White paper (Snowmass 2021)

Ø Short beams, flat or round beams

Energy ℇ ≃ 0.1 − 15 TeV

Luminosity ℒ > 10!"𝑐𝑚#$𝑠#%

Emittance 𝜖&/(~10 − 100 𝑛𝑚

W. Leemans and E. Esarey Phys. Today 62.3: 44-49 (2009)
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Emittance is a measure of the beam quality

Normalized emittance 𝜖 ≡ 𝜖) = 𝑥$ 𝑢&$ − 𝑥𝑢& $

Trace-space emittance 𝜖*+ = 𝑥$ 𝑥,$ − 𝑥𝑥, $

Low energy spread limit: 𝜖) ≃ 𝛾𝜖*+
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• Can be preserved in the presence of linear focusing fields

• Projected emittance & slice emittance
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Sources of emittance growth within a plasma-based collider

Accelerating stage
10s-100s

Coupling
• Transport the beam
• Replace driver

Mismatch/misalignement and decoherence

Non-linear focusing fields

Binary collisions, radiation

Instability

Chromaticity (divergence 
+ energy spread)

Mismatch/misalignment

If plasma: same as acc. stages
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1. Energy spread and decoherence

2. Non-linear focusing fields

3. Hose instability

4. Additional sources
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Beam dynamics within a stage: betatron oscillations

Blowout regime

Longitudinal: acceleration: 𝐸! =
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à Betatron amplitude ∝ 𝛾4
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J. B. Rosenzweig et al. PRA 44.10 R6189 (1991)
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Figure 5. Transverse misalignment of a beam with a finite energy spread, evolving in phase space as it
traverses a laser-plasma accelerator from the start (a) to 30 cm downstream (d). As the di�erent energy slices
rotate at di�erent rates, they decohere and cover a larger area in phase space — an emittance growth. Here,
DG = ?G/(<42) is the transverse normalized momentum, W0 is the longitudinal Lorentz factor of the particles,
and I is the longitudinal position. Source: ref. [62] (CC BY 3.0).

and octupole magnets, but can easily occur in a plasma accelerator. Such nonlinear focusing can be
due to the shape of the wake (section 2.4.1) or due to the response of the plasma to the accelerated
beam (sections 2.4.2 and 2.4.3).

2.4.1 Wakes with nonlinear focusing fields

In the linear and quasilinear regimes of plasma acceleration, the focusing force is the product of a
linear term with the driver’s transverse envelope, causing the focusing force to be linear only near
the propagation axis. In practice, this is rarely a limitation as the trailing beam is usually much
thinner than the driver. In the blowout regime, the focusing force on a trailing electron beam is linear
provided the trailing beam remains in the ion cavity, regardless of the beam charge. The acceleration
of a positron beam in a nonlinear wake cannot exploit this property: in a number of schemes proposed
today, the region with accelerating fields for positrons demonstrates a strongly nonlinear focusing
force [63, 64]. While it is impossible for emittance to be fully preserved in these cases, the emittance
grows to reach an equilibrium, often with a complex non-Gaussian phase space [65]. This means
that whenever nonlinear focusing is either useful in itself (e.g., for suppressing the beam-breakup
instability) or it is a necessary side e�ect of a scheme (e.g., for positron acceleration), it may be
worth “paying the price” of some emittance growth in order to reach the overarching goals.

2.4.2 Ion motion

Ions are often assumed to be stationary in a plasma-wakefield accelerator. However, if the electron
beam is su�ciently dense, the radial impulse imparted by the beam will move the ions noticeably

– 12 –

Mismatch and misalignment result in emittance growth

longitudinal momentum during the acceleration process.
To compensate for this effect, the normalized transverse
trace-space emittance !n ¼ ! !pz=mec is introduced, with
!pz, me, and c being the particle averaged longitudinal
momentum, the electron rest mass, and the speed of light,
respectively.

We consider an electron bunch with transverse proper-
ties defined by the emittance ! and the Courant-Snyder
[18] parameters

" ¼ hx2i
!

; # ¼ hx02i
!

; $ ¼ " hxx0i
!

: (2)

The beta function is a measure for the beam size and for the
betatron length, gamma is a measure for the spread in the
particle slopes, and alpha represents the correlation be-
tween x and x0. Combining Eqs. (1) and (2) yields the
relation between these parameters, "# ¼ 1þ $2.

In the following we assume that the bunch propagates
collinear and with a defined temporal offset with respect to
a laser pulse on the laser propagation axis. The laser pulse
with normalized vector potential a0 is focused onto a gas
target, ionizes the gas and simultaneously excites plasma
waves that carry large amplitude wakefields. Experiments
with externally injected electron bunches should be de-
signed such that the laser drives linear (a0 $ 1) or quasi-
linear plasma waves (a0 % 1) to inhibit self-injection of
plasma electrons [19]. The formulation within the scope of
this work describes only this regime and is not valid for the
highly nonlinear or blowout regime. Since a nonlinear
radial dependence of the fields causes emittance growth,
the driving laser pulse must have a ‘‘parabolalike’’ radial
intensity dependence near axis, a2ðrÞ % 1" ðr=rsÞ2, to
guarantee for linearly focusing fields in the quasilinear
regime. A Gaussian envelope of the laser driver,

a2ð%; rÞ ¼ a20 exp
!
"ð%" %lÞ2

L2

"
exp

!
" 2r2

r2s

"
; (3)

complying with this constraint is assumed, where % ¼
z" vgt is the comoving variable, vg is the group velocity
of the laser, rs is the laser spot size, and L the length of the
pulse. The longitudinal electric wakefield component for a
resonantly driven plasma wave (L ¼

ffiffiffi
2

p
=kp) for positions

behind the laser pulse ð%" %lÞ2 ( L2 is then given by [20]

Ez

E0
’

ffiffiffiffiffi
&

2e

r
a20 exp

!
" 2r2

r2s

"
cos½kpð%" %lÞ*: (4)

Here kp ¼ !p=c is the plasma wave number, !p is the
plasma frequency, and E0 is the cold nonrelativistic
wave breaking field [21]. Moreover, the radial wakefield
Er " cB' acting on a relativistic, charged particle can be
deduced using Maxwell’s equations and assuming cylin-
drical symmetry. This yields for the transverse fields near
the axis [22],

Er " cB'

E0
’ "K2kpr sin½kpð%" %lÞ*; (5)

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8&=e4

p
a0=ðkprsÞ. For simplicity we will use

kp%l ¼ & in the following, such that maximum accelerat-
ing field and the zero crossing of the focusing field are
located at % ¼ 0. The aim in external injection is to place
electron bunches with a length much shorter than the
plasma wavelength and a transverse extent much smaller
than the laser spot size into the phase region of the wake
which is both focusing and accelerating. While being
accelerated, the individual particles perform transverse
betatron oscillations with a betatron frequency of

!2
" ¼ K2!2

p

#r
sinðkp%Þ; (6)

where #r is the Lorentz factor. Because of the particle
oscillations, the ellipse with area &!, defined by the
Courant-Snyder parameters [18],

#x2 þ 2$xx0 þ "x02 ¼ !; (7)

rotates according to the single-particle trajectories in trace
space, which are given by

x2="m þ "mx
02 ¼ const; (8)

where "m is deduced from the equation of motion,

"m ¼ !pz

me#r!"
: (9)

Since the betatron frequency [Eq. (6)] is %-dependent and
additionally the electron bunch may have an energy chirp,
the individual longitudinal slices of a finite-length bunch
oscillate at different frequencies which leads to a
%-dependence of the betatron-oscillation phase, and ulti-
mately to complete decoherence during the acceleration
process. This effect is illustrated in Fig. 1, where the trace-
space ellipses of longitudinal bunch slices from a PIC
simulation are shown for different z positions. The interval

½!z" 3(z; !zþ 3(z*, where (z ¼
ffiffiffiffiffiffiffiffi
hz2i

p
is the rms bunch

FIG. 1. Ellipses representing bunch slices from PIC simulation
C2 (see below) at position z ¼ "0:03 mm (left) and z ¼
1:06 mm (right). The gray scale of the ellipse was chosen
according to the ratio of the charge in a slice q and total bunch
charge qb.

T. MEHRLING et al. Phys. Rev. ST Accel. Beams 15, 111303 (2012)
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case (CM)—beam with matched Courant-Snyder parame-
ters, !CMðz0Þ ¼ !m, "CMðz0Þ ¼ "m ¼ 0; (ii) mismatched
case (C1)—beam with matched beta function at focus
!CMðzf;C1Þ ¼ !m but with mismatched focal position
zf;C1 ! z0 ! "C1ðz0Þ ! 0; (iii) mismatched case (C2)—
beam with mismatched beta function !C2ðz0Þ ! !m but
matched focal position zf;C2 ¼ z0 ! "C2ðz0Þ ¼ 0. For the
matched case (CM), the focal position of the bunch zf;CM,
must be positioned at z0 to satisfy "CMðz0Þ ¼ 0 in the
matching conditions (10). We analyzed the slope of the
transverse force at the position where the bunch is sup-
posed to be injected and used Eqs. (6) and (9) to find the
matching beta function!m ¼ 0:126 mm. This corresponds
to an rms beam size of 1:97 #m for $n;init ¼ 0:3 #m.

In simulation (C1), the focus is at zf;C1 ¼ $20c=!p ’
$0:33 mm. During the initial vacuum propagation the
Courant-Snyder parameters evolve according to the for-
mulas for their evolution in a free drift, neglecting space-
charge forces [18],

"ðzÞ ¼ zf $ z

!f
; !ðzÞ ¼ !f þ

ðz$ zfÞ2
!f

;

%ðzÞ ¼ 1

!f
;

(17)

where !f is the beta function at focus zf. The beta and
gamma functions at z0 in the PIC simulation are !C1;0 ¼
1:026 mm and %C1;0 ¼ 7:937 mm$1. For case (C2) the
beta and gamma function at z0 are !C2;0 ¼ 0:678 mm,
%C2;0 ¼ 1:476 mm$1. Figure 2 depicts the evolution of
the Courant-Snyder parameters during acceleration for
the three mentioned cases. The evolution of the alpha

parameter shows that bunches in simulations (CM) and
(C2) are focused to position z0 whereas "C1 crosses zero
before z0 and the bunch is defocused at position z0. This is
also indicated by the evolution of the beta parameter. Its
parabola vertices (at focus) for cases (CM) and (C2) are
situated at z0 in contrast to case (C1), for which the vertex
is in front of the plasma rising edge. The gamma function
of (C1) initially equals %CMðz0Þ while %C2 is not matched.
If matched, the bunch ellipse will not oscillate after injec-
tion and " will remain zero during the acceleration process
as observed for simulation (CM), whereas the alpha pa-
rameters in the cases (C1) and (C2) oscillate around zero.
Owing to relativistic mass gain, the beta function increases
adiabatically and the gamma function decreases accord-
ingly. The ", !, % curves of (C1) and (C2) all approach the
matched case (CM) by the cost of emittance growth during
betatron-phase mixing as can be seen by comparison of
Figs. 2 and 3. We want to emphasize that the emittance in
the matched case (CM) did not grow significantly despite
the fact that the bunch slipped back substantially with
respect to the plasma wave because of the low injection
energy. This is because the phase slippage occurs adiabati-
cally and does not disrupt the matching conditions.
The betatron phase is completely mixed at z & 2:5 mm

and emittance growth is saturated at that position in good
agreement with expectations [confer Eq. (18) below]. The
emittance in the matched case (CM) grows marginally
compared to the nonmatched cases. After exiting the
plasma target and the beam being at a waist (" ¼ 0),
the Courant-Snyder parameters evolve again according
to Eq. (17).
We now compare these numerical results on the emit-

tance evolution with the above derived analytic theory. The
normalized emittance at the plasma exit in the PIC simu-
lation is $n;C1 ¼ 1:360 #m for case (C1) and $n;C2 ¼
0:830 for case (C2). Using formula (16) we find $n;fin;C1 ¼
1:371 #m and $n;fin;C2 ¼ 0:835 #m. Thus, the theory
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Ø First stages: full decoherence within 1 stage

Ø Later stages: (almost) no decoherence within 1 stage

(but average emittance growth)

Ø 10 nm, 𝜇rad tolerances

Mismatch results in envelope oscillations

Different energy slices oscillate with different periods (decoherence)

This causes in (slice) emittance growth

• Decoherence length  𝐿/.012.+.)0. =
3*
4+

• Saturated emittance

[1] T. Mehrling et al. Phys. Rev. ST Accel. Beams 15 111303 (2012)
C. A.Lindstrøm et al., Proceedings of IPAC2016 (2016)
M. Thévenet et al., Phys. Rev. Accel. Beams 22: 051302 (2019)
S..Cheshkov,  et al., PRSTAB 3: 071301 (2000)
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Adiabatic ramps mitigate emittance growth due to mismatch

linear (a ¼ eA=mec2 ≪ 1) regime [2,17] with longitudinal
and radial electric fields

Ezðr; ζÞ ∝ a2k2p exp
!
−
k2pσ2z
2

− 2r2

w2

"
cosðΨÞ; ð1Þ

Erðr; ζÞ ∝ −
a2kpr
w2

exp
!
−
k2pσ2z
2

−
2r2

w2

"
sinðΨÞ; ð2Þ

with Ψ ¼ kpζ, the comoving variable ζ ¼ z − vgt, the
laser group velocity vg, and the plasma frequency
kpc ¼ ðne2=meϵ0Þ1=2. We assume a Gaussian laser pulse
of normalized vector potential a2 ¼ a20 exp ð−2r2=w2Þ
exp ½−ζ2=ð2σ2zÞ% and length σz. Near the axis, Er causes
a focusing strength K of

K ¼ e
γmec2

∂rErjr¼0

∝ −
a2kp
w2

exp ð−k2pσ2z=2Þ sinðΨÞ; ð3Þ

and the beam is matched for β ¼ 1=
ffiffiffiffi
K

p
, with γ the

normalized electron beam energy. A matched beam has
a constant beam envelope, unlike a mismatched beam,
whose transverse phase space rotates with the betatron
frequencyωβ. The betatron frequency is a function ofK and
consequently γ. If bunch electrons experience varying K
(due to a finite bunch length) or have different energies,
the phase space ellipses of those electrons will rotate with
different betatron frequencies, causing an increase in
projected emittance. To prevent emittance growth, the
whole beam has to be matched [15].
The focusing strength is proportional to the transverse

electric field gradient and therefore depends on the phaseΨ
and the slowly varying local quantities n, the plasma
density determining the peak electric field, and w, the
laser spot size setting the wakefield width. To obtain a
desired focusing profile, we have two free parameters: wðzÞ
and nðzÞ. A discharge capillary waveguide allows one to
select both by designing a proper target geometry [18].
In general, a plasma accelerator stage consists of three

sections: (i) an up ramp of the plasma density, (ii) a constant
(or slightly tapered) density for acceleration, and (iii) a
density down ramp to extract the accelerated beam.

A. Injection

The discussion of the plasma up ramp is relevant only for
external injection, including staged accelerator schemes.
We assume that the laser follows the paraxial laser
evolution in the density up ramp, with the laser focus at
the beginning of the acceleration section, and is then guided
with a plasma channel until the end of the extraction
section.

At the beginning of the acceleration section, the electron
beta function needs to be matched to the corresponding
plasma density naccel, and α ¼ 0 is required. Typically, a
plasma target with a sharp vacuum-plasma transition is
considered, and the electron beam is focused at the start of
the plasma to match it to the focusing forces [15]. This
causes extreme sensitivity to emittance growth from trans-
versely mismatched beams and demands a strong focusing
injection optics.
By adding a smooth vacuum-plasma transition of length

linj before the acceleration section, an externally injected
bunch already experiences focusing forces as it propagates
through the density up ramp. Neglecting space charge, the
beam envelope follows the differential envelope equation
σ00x þ KðzÞσx − ϵ2σ−3x ¼ 0. The additional focusing, sim-
ilar to a thick lens, relaxes the injection beam optics. By
backpropagating the matched beam through the density up
ramp, we calculate the alpha and beta functions at the
beginning of the up ramp and derive a “virtual focus” in
the plasma to which we tune the injection beam optics (see
Fig. 1). The virtual focus has a larger beta function βfoc
compared to a scheme with a sharp vacuum-plasma
transition.

B. Acceleration

Next, we discuss the acceleration in the plasma. For
efficient acceleration, the bunch needs to be placed near the
on-crest acceleration phase Ψ ∼ −π at the beginning of
the acceleration section. It then slowly slips with respect to
the laser. After acceleration to 1.0 GeV, using our present
parameter set, it is extracted through the plasma-vacuum
transition.
During acceleration, the bunch accumulates a large

correlated energy spread due to its finite bunch length
compared to the plasma wavelength, combined with off-
crest acceleration and phase slippage. However, the emit-
tance, as experimentally demonstrated [12,14], remains
constant, since the beam is always matched to the focusing
forces. Minimizing the energy spread growth is highly
desirable; however, this is beyond the scope of this paper.
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FIG. 1. Beam size (solid black line) and emittance evolution
(red line) in the injection section. The dashed line represents the
beam size evolution without the plasma target to illustrate the
position and size of the virtual electron focus in the injection
section.
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• Adiabatic changes in focusing properties prevent emittance growth

• Ramp length ≫ 𝜆5
• Useful for entrance (upramp) or exit (downramp) of plasma stage

• Ramp length unpractical for high-energy beams

thus γ ¼ 1=β. Furthermore, the beta function in a focusing
channel with constant focusing strength K writes for
α0 ¼ 0 (index zero indicates initial conditions) as:

β ¼ β0cos2
ffiffiffiffi
K

p
zþ 1

β0K
sin2

ffiffiffiffi
K

p
z; (2)

which is constant if the relation K ¼ 1=β20 is fulfilled. If a
beam is not matched, the beta function oscillates. Since the
focusing strength in a wave depends in a sinelike manner
on the relative longitudinal position within the wave,
different longitudinal slices oscillate with different frequen-
cies, so that the projected emittance increases until the
matching condition is reached for the projected phase-
space. In case of a pure mismatch of the beta function (i.e.,
α0 ¼ 0 holds) the ratio of the final emittance εf to the initial
emittance εi is given as [1]:

εf
εi

¼ 1

2

βm2 þ β02

βmβ0
; (3)

where βm stands for the matched beta function.
Equation (3) is equally valid for a beam which is injected
into a plasma channel as for a beam which is generated
inside the channel. Especially in case of self-injection the
captured electrons form a beam with large energy spread.
Since the focusing strength is inversely proportional to the
particle momentum, the matched beta function differs for
the different energies in the bunch which leads to an
additional contribution to the emittance in accordance to
Eq. (3). The phase-space mixing is a fast process; we can
thus assume that a beam obeys the matching conditions
when it reaches the end of the plasma channel.
A particular problem encountered in the case of self-

injected beams is related to the fact that the canonical
phase-space emittance grows strongly in a drift in all cases
where a large beam divergence is combined with a large
energy spread. This fundamental process is described in
general form in [3] and applied to the case of a plasma
based electron source in [4]. The relevance of the phase-
space emittance lies in the fact that the trace-space
emittance rapidly growths up to the value of the phase-
space emittance as soon as the divergence of the beam is
reduced, i.e., in the next focusing element [3].
A reduction of the divergence of a plasma accelerated

beam by an appropriately designed transition region from
plasma to vacuum in which the beam size is increased is
considered in [5]. The emittance measurements presented
therein show the trace-space emittance. A conclusion on
the phase-space emittance can, despite the somewhat
reduced divergence, not be drawn since the divergence is
still high. A reliable emittance measurement can in the case

of self-injected beams only be performed behind a focusing
element.
The analytical treatment of a matching section presented

below concentrates on the optical functions and thus on
the trace-space emittance. Distortions of the phase-space
emittance are addressed by numerical simulations.

III. THE MATCHING SECTION

In the matching section the focusing strength KðzÞ
provided by the plasma wave shall be decreased in such
a way that the beam size expands in a controlled way and
the beam divergence in the following drift is reduced.
Noting that the equation of motion of individual particles
needs to converge to the known case of a constant focusing
channel if the focusing strength converges to a constant, the
following ansatz is formulated:

x ¼ AðzÞ cos
Z ffiffiffiffiffiffiffiffiffiffi

KðzÞ
p

dzþ BðzÞffiffiffiffiffiffiffiffiffiffi
KðzÞ

p sin
Z ffiffiffiffiffiffiffiffiffiffi

KðzÞ
p

dz:

(4)

AðzÞ and BðzÞ are arbitrary functions.
The single particle differential equation x00 þ Kx ¼ 0

can be solved for this case (see Appendix A.1 for details)
and yields:

x ¼ x0ð1þ gzÞ cosφþ ðx00 − x0gÞð1þ gzÞffiffiffiffiffiffi
K0

p sinφ; (5)

where the following functional dependence of the focusing
strength is assumed:

KðzÞ ¼ K0

ð1þ gzÞ4 g ¼ −
K0

0

4K0

: (6)

g is a taper parameter introduced to describe the decay of
the focusing field and K0 and K0

0 are the initial focusing
strength and the first derivative of the focusing strength
with respect to the longitudinal coordinate z. The phase
advance φ is found as:

φ ¼
ffiffiffiffiffiffi
K0

p
z

1þ gz
; (7)

which converges for large z to φ∞ ¼
ffiffiffiffi
K0

p

g . Figure 1 shows
some example trajectories for different values of φ∞. It
illustrates the transition from a free expansion for small
phase advance to the case of an adiabatic expansion with an
oscillation of slowly increasing amplitude for larger phase
advance.
Equation (5) describes the motion of individual particles.

To describe the envelope of a beam, Eq. (5) needs to be
squared followed by averaging over the variables. After
replacements according to Eq. (1) the beta function
follows as:

KLAUS FLOETTMANN Phys. Rev. ST Accel. Beams 17, 054402 (2014)

054402-2

[1] K. Floettmann PRSTAB 17: 054402 (2014) 
[2]  I. Dornmair et al., PRSTAB 18: 041302 (2015)
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Energy spread is a key factor in this source of emittance growth

Source: A. G. R. Thomas & D. Seipt PRAB 24 104602 (2021)

for efficient acceleration in the nonlinear regime and hard to
capture without resorting to full-scale simulation. With the
approach described here, a full-scale simulation is required,
but once performed, the same simulation may be used to
study different beam phase spaces rapidly and combined
with different elements to build an accelerating lattice.
The paper proceeds in the following manner. Section II

lays out the framework for transfer matrices M that are
nonlinear in the beam energy (spread). Section III derives
the chromatic emittance growth from the nonlinear transfer
matrix by defining an extended beam matrix Σ, such that
the emittance growth can be calculated using the expression

ϵN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðPTMΣMTPÞ

q
; ð1Þ

where P is a projector. Section IV calculates the nonlinear
transfer matrices for other simple elements, i.e., drift space
and simple focusing lens, for demonstration of combining
the plasma accelerator simulations with other elements.
Section V describes a three-dimensional (3D) particle-in-
cell simulation of a meter-scale beam-driven plasma wake-
field accelerator and the construction of a set of transfer
matrices through the stages. Finally, Sec. VI outlines a
design for a simple lattice comprising “cells” of a plasma
accelerating stage, two drift spaces, and a simple (thin) lens
accelerating a beam of particles from 10 GeV to 1 TeV—as
shown in the schematic in Fig. 1—and calculates the
resulting chromatic emittance growth as a function of
initial transverse emittance and beam energy spread.

II. LINEAR TRANSFER MATRICES
FOR PLASMA ACCELERATORS

Assuming a coordinate system x, y, z, we can build
transfer matrices from particle-in-cell simulations per-
formed in a window moving at the speed of light in the
z direction, as is typical, by assuming that the beam is
ultrarelativistic, 1 − βz ⋘ 1, where its normalized velocity
is βz ¼ vz=c. This assumption means that the beam remains
at approximately constant phase, z − ct, and therefore
experiences fields at a fixed grid position in the simulation
box, i.e., time-dependent fields only. By making use of a
paraxial approximation, the field gradients on the axis at
that fixed grid position integrated over time are the only

information required to build the matrix describing the
transport of a beam with a given energy (the “design
energy”) through the full plasma accelerator.

A. Basic transfer matrix

We start with the equations of motion for a charged
particle with charge q and mass m in external fields E⃗
and B⃗,

dx
dt

¼ ux
γ
;

dy
dt

¼
uy
γ
; ð2Þ

dux
dt

≃
q
m
ðEx − cByÞ;

duy
dt

≃
q
m
ðEy þ cBxÞ; ð3Þ

and

dγ
dt

¼ qEz

mc
; ð4Þ

where ul ¼ γvl is the proper velocity, with l a Cartesian
component (l ¼ x, y).
Under the paraxial approximation, we may expand the

Ex, Ey, Bx, and By fields as a Taylor series in x and y about
the axis;

Flðx;y;zÞ¼Flð0;0;zÞþx
∂Fl

∂x ð0;0;zÞþy
∂Fl

∂y ð0;0;zÞþ…

ð5Þ

Where F is a field (F ¼ E, B). Hence, Eq. (3) can be
expressed as

dux
dt

≃ −α2xxx − α2xyy;
duy
dt

≃ −α2yxx − α2yyy; ð6Þ

where

α2kl ¼ −
q
m

∂
∂k ðEl − εlpcBpÞj

x¼0;y¼0
; ð7Þ

with εlp the Levi-Civita symbol and using Einstein sum-
mation convention.

FIG. 1. Schematic showing N stage plasma accelerator, with (chromatic) focusing lenses between plasma accelerating stages with 2f
focusing throughout. fs is the plasma stage focal length and fLs is the beam focusing optic focal length (at the design energy) of the sth
accelerating stage. FPPs and SPPs are the primary and secondary principal planes of the accelerating stage, respectively.

ALEC G. R. THOMAS and DANIEL SEIPT PHYS. REV. ACCEL. BEAMS 24, 104602 (2021)

104602-2

Chromatic focusing and mismatch:

“we find that for initial relative energy spreads below 104<, energy-spread growth below 104= of the energy 

gain per stage and normalized emittance below mm-mrad, the chromatic emittance growth can be minimal ”
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Non-linear focusing fields can cause emittance growth

Source: S. Diederichs PRAB 22, 081301 (2019) 

Case 1: linear regime

Case 2: Positron acceleration

and validated by PIC simulations in Sec. III. Conclusions are
presented in Sec. IV.

II. GENERATION OF POSITRON-BEAM-
FOCUSING WAKES USING PLASMA COLUMNS

The transverse wakefield generated by a dense electron
drive beam in a homogeneous plasma target has a linear
radial dependence within the ion cavity [16,17], and rapidly
decays within the surrounding electron sheath [17]. In
contrast, for a plasma with a finite radial extent, Rp, smaller
than the ion cavity, or blowout, radius Rb (we assume the
drive beam propagates along the column center), the
transverse wakefield increases linearly (∝ r, where r is
the distance from the plasma column center) only within
the plasma column, and falls off as ∝ r−1 for Rp < r ≤ Rb.
For r > Rb the wakefield is damped by the electron sheath.
The fact that the fields falls off for r > Rp implies that the
resulting blowout radius is greater than for the homo-
geneous plasma case, and, most importantly, the altered
transverse wakefield structure leads to a modification of
plasma electron trajectories such that the longitudinal
position behind the drive beam where the electrons cross
the r ¼ 0 axis strongly depends on the particle’s impact
parameter. This is illustrated in Fig. 1, which shows the
plasma electron density and plasma electron trajectories
within the ðζ; xÞ plane calculated using the quasi-static
three-dimensional (3D) PIC code HiPACE [18]. Here x is the
transverse distance from the column axis, ζ ¼ z − ct is the
comoving coordinate (z and t are, respectively, the longi-
tudinal coordinate and the time, and c is the speed of light
in vacuum). The colored lines depict trajectories of elec-
trons with varying initial impact parameters, and the plasma
electron density is shown in the background (blue color
scale). In this example (Figs. 1 and 2), the plasma column

has a radius kpRp ¼ 2.5, where kp ¼ ωp=c is the plasma
wavenumber, ωp ¼ ð4πn0e2=mÞ1=2 the plasma frequency,
n0 the plasma electron density within the column, and e and
m the electron charge and mass, respectively. The drive
beam is Gaussian with dimensions kpσ

ðdÞ
x;y ¼ 0.3, kpσ

ðdÞ
ζ ¼ffiffiffi

2
p

, and peak current Îb=IA ¼ 1, where IA ¼ mc3=e ≃
17 kA is the Alfvén current. Instead of the small electron
cusp, or density spike, as obtained in a homogeneous
plasma, an extended high-density electron filament is
generated for kpζ ≲ −9.0. This plasma filament induces
a long region that is both focusing and accelerating for
positron beams, as shown in Fig. 2, depicting the transverse
wakefield, ðEx − ByÞ=E0 in the ðζ; xÞ plane, together with
an on-axis line-out of the longitudinal wakefield, Ez=E0,
where E0 ¼ mcωp=e.
The value of the plasma-column radius strongly affects

the wakefield structure. In the limit Rp ≫ Rb, the resulting
wakefields converge towards the homogeneous plasma
case, where the positron focusing and accelerating region
becomes very small, existing only within a large electron
density spike at the back of the ion cavity. For Rp ≲ Rb,
the opposite occurs, namely the positron-focusing region
extends over a progressively longer region while the
maximum amplitude of the longitudinal field decreases
for smaller Rp. This is due to the reduction of the restoring
forces on the plasma electrons expelled from the drive
beam region occurring for smaller column radii.
To investigate this relation more quantitatively, we

perform a series of PIC simulations for varying Rp, using
the above mentioned drive beam parameters. For this

FIG. 1. Plasma electron density, np=n0 (blue color scale), and
trajectories of plasma electrons with differing impact parameters,
kpX0 (colored lines) in a finite radius plasma with kpRp ¼ 2.5.
See text for drive beam parameters.

FIG. 2. 2D map of the transverse wakefield ðEx − ByÞ=E0 and
on-axis line-out of Ez=E0 (blue curve) generated by an electron
drive beam in a finite plasma column with radius kpRp ¼ 2.5.
Drive beam parameters are the same as in Fig. 1. The finite
plasma column leads to the formation of a wide longitudinal
region that is both accelerating and focusing for positron beams.

S. DIEDERICHS et al. PHYS. REV. ACCEL. BEAMS 22, 081301 (2019)

081301-2

parameter scan, the quasi-static modality of the cylindri-
cally symmetric PIC code INF&RNO [19,20] was used, after
successfully benchmarking the results against HiPACE.
Results are shown in Fig. 3, where the on-axis line-out
of the longitudinal field is plotted as a function of the
column radius, and where the longitudinal regions that are
focusing or defocusing for positrons have been highlighted.
For kpRp ≲ 2.5 there is an extended ζ-region allowing
for the transport and acceleration of positron beams. The
accelerating field amplitude is enhanced for greater plasma
radii. However, for kpRp ≳ 2.5, the positron-focusing
region decays to a singular point, rendering stable positron
acceleration impossible.
The elongation of the electron trajectories depends on the

plasma column radius and on the drive beam parameters.
The plasma radius can be optimized for positron accel-
eration and focusing (i.e., a long focusing ζ-region and high
field amplitude) for any given drive beam parameters.
In particular, for a Gaussian drive beam with kpσ

ðdÞ
x;y ≪ 1

and a beam current 1 ≤ Îb=IA ≤ 10, numerical exploration
of the parameters space provides the estimate for the
optimal plasma radius

kpRp ≈ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Îb=IA

3

q
: ð1Þ

This relation ensures that the plasma column radius Rp is
smaller than the blowout radius Rb (compare, e.g., [21,22])
such that the focusing wake region is long and Ez in this
region is significantly high. For simplicity, we only con-
sider plasma columns with a steplike edge, but it should be
noted that this concept is also viable for the case of plasma
profiles with a smooth edge.
Such plasma columns can be created either by laser-

induced ionization or by beam-field-induced ionization

from the drive beam itself. Production of meter-scale
plasma columns by laser-induced ionization using an
axicon lens [23] has been experimentally demonstrated
[24]. The generation of plasma columns with a radial
dimension of a few tens of microns and an on-axis density
of ∼1017 cm−3 (parameters near those considered in this
work) have also been demonstrated, for the purpose of laser
guiding over cm-scale plasmas [25,26]. The generation of
meter-scale plasma columns, with a few tens of microns
radius and an on-axis density of ∼1017 cm−3, using an
axicon lens is possible with current laser technology,
requiring on the order of a few mJ of laser energy per
cm of plasma [26]. On the other hand, creating the plasma
column by means of beam-field-induced ionization from
the drive beam, instead of relying on an ionizing laser, has
the advantage that the column is inherently aligned with the
drive beam itself; however, since the ionization rate is
strongly coupled to the drive beam parameters and to the
gas density, the viable parameter space is limited.

III. TRANSPORT AND ACCELERATION
OF POSITRON BEAMS

Figure 4 shows a lineout of the transverse wakefield
structure (blue curve) at kpζ ¼ −11.6 for the drive beam
parameters considered in Figs. 1 and 2 and a plasma
column radius of kpRp ¼ 2.5. Near the axis, the wakefield
has a discontinuous, steplike dependence from the trans-
verse coordinate, while the field strength decays far from
the axis. An initially Gaussian witness beam can be
quasimatched in such a steplike confining wake so that
the emittance growth is minimized during beam transport.
The (normalized) rms beam emittance in the x-plane is
defined as ϵx ¼ ðhx2ihu2xi − hxuxi2Þ1=2, where x and ux
are, respectively, the transverse position and momentum

FIG. 3. On-axis longitudinal line-out of the accelerating field,
Ez=E0, plotted as a function of the plasma column radius, kpRp.
Red regions are accelerating for positrons. The separation
between focusing and defocusing regions for positrons is marked
with a dashed line.

FIG. 4. Transverse wakefield amplitude, ðEx − ByÞ=E0, versus
transverse position, kpx, for kpζ ¼ −11.6 (cf., Fig. 2). The blue
line depicts the focusing fields without any witness beam, and the
red line denotes the focusing fields in the beam-loaded case,
where the Gaussian witness beam parameters are given by
n̂b=n0 ¼ 500, σx;y ¼ 0.025k−1p , and σz ¼ 0.5k−1p . Inset: Trans-
verse wakefields for a wider x-range.

POSITRON TRANSPORT AND ACCELERATION … PHYS. REV. ACCEL. BEAMS 22, 081301 (2019)

081301-3

Ø (𝜁-dependent) Equilibrium is reached, at the price of 
emittance growth

Ø Starting from a (non-trivial) matched distribution, 
emittance can be preserved

1/3: Non-linear plasma fields

Maxence Thévenet - ALEGRO - 23/03/2023
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Non-linear focusing fields can cause emittance growth

2/3: Response of the plasma electrons: transverse beam loading

• Linear and non-linear (just not full blowout), 
plasma electrons can be present in the cavity

• A high-density beam perturbs the electron density

• ζ-dependent and non-linear focusing field

à This picture evolves during propagation

Courtesy of A. Ferran Pousa
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Non-linear focusing fields can cause emittance growth

3/3: Response of the plasma ion: ion motion

The corresponding Ff is significantly perturbed around the
axis, as seen in Fig. 2(c), where F⃗f · x̂ in the y ¼ 0 plane is
plotted for several values of ξ. The slope of F⃗f · x̂ is nearly
the same in each slice, but the maximum value and width
grows through the beam. The initial transverse density
profile of the beam is shown as a reference. From Fig. 2(c),
we can also estimate the perturbation of Ez using Panofsky-
Wenzel theorem ΔEz¼

R
dr∂Ff=∂ξ≈ΔrΔFf=2Δξ, which

is on the order of 0.002 for Δr ¼ 0.1, ΔFf ¼ 0.02, and
Δξ ¼ 0.5. The ΔEz is negligible compared to −1.0, which
is that felt by the trailing beam. This is consistent with the
lower resolution simulations where the bubble excitation is
also modeled. The basic reason for such a small perturba-
tion on Ez is that, for each slice, the total charge contained
in the ion density peak is very small, and it changes slowly
along ξ.
In Fig. 2(d), we plot the emittance growth for slices at the

same values of ξ, as well as the projected emittance. The
emittance is seen to rapidly grow and then saturate for each
slice. The projected emittance (and the slice in the middle
of the beam) grows by less than a factor of 1.8, and slices in
the rear of the beam grow only by a factor of 2.1. This
emittance growth is much less than the anticipated growth
[16,17] and that seen in Fig. 1(b) for A ¼ 200 and σ ¼ σx0.
The fundamental reason for the significantly smaller than

expected emittance growth is that the ion compression is
much narrower than the initial beam spot size. This can be

seen in Fig. 3(a), where a lineout of the ion density vs x (for
y ¼ 0) is shown in the middle of the beam; i.e., ξ ¼ 0 is
shown from the above simulation. For comparison, the
initial trailing beam profile (the dashed gray line) and the
prescribed form for the ion density (the dashed red line) for
A ¼ 135.9 and σ ¼ 0.1σx0 are also shown. The narrower
ion compression leads to a smaller value of px0 and to an
anharmonic motion, such that the time average over a
particle’s orbit is less than px0=

ffiffiffi
2

p
. We note that the ion

collapse develops a pedestal outside the core as one moves
through the bunch, although the width of the core remains
unchanged. This effectively increases σ for the later slices.
To quantify the emittance growth, we first note that

just as the emittance quickly reaches a steady state [as seen
in Fig. 2(d)], so too does the beam phase space and the
ion density. In the steady state (where the spot size does
not change), hxpxif ¼ 0, so the final emittance of the beam

is ϵNxf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ifhp2

xif
q

. In addition, in the steady state,

hx2if ¼ fhx2igt;Δt ¼ hfx2gt;Δti, where fgt;Δt represents
the time average of a quantity at time t during a duration
Δt. We can choose a Δt ¼ T that is much larger
than every particle’s oscillation period τ. Therefore,
fx2gt;T ¼ fx2gt;τ ≡ X2

ave ¼ ð
R x0
0

dx
vx
x2=

R x0
0

dx
vx
Þ ¼ ð

R x0
0 dxx2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ψðx; ξÞ− ψðx0; ξÞ%

p
Þ = ð

R x0
0 dx =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ψðx; ξÞ− ψðx0; ξÞ%

p
Þ,

where x0 is the maximum value of x, vx ¼ px=γ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ψðx; ξÞ − ψðx0; ξÞ%=γ

p
, and ψ is the wake potential

[FfðxÞ ¼ −∂ψ=∂x]. For highly relativistic beams, there is
no phase slippage, so each slice evolves independently with
a different phase space distribution. We henceforth assume
that γ does not change, so it can be brought out of the
integrals. In reality, γ changes adiabatically, and including
this in the numerical work does not alter the results.
Following analogous reasoning leads to fp2

xgt;T¼P2
ave¼

γð
R x0
0 dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ψðx;ξÞ−ψðx0;ξÞ%

p
Þ=ð

R x0
0 dx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ψðx;ξÞ−ψðx0;ξÞ%

p
Þ.

In Fig. 3(b), we plot px and x vs s ¼ z ≈ ct for an
electron starting at rest at x0 ¼ σx0 in a focusing force with
A ¼ 200 and σ ¼ 0.1σx0 or σ ¼ σx0. The s axis is normal-
ized to the period of the oscillation for each case, while px
and x are normalized to their maximum values px0 and x0.
It is clearly seen that the xðsÞ motion is essentially
harmonic for both cases, while the pxðsÞ motion is very
different for the σ ¼ 0.1σx0 (narrow ion collapse) case; i.e.,
it is anharmonic. Because the xðsÞ motion is harmonic,
Xave=x0 ≈ 1=

ffiffiffi
2

p
for both cases, while, by inspection of

Fig. 3(b), Pave=px0 ≪ 1=
ffiffiffi
2

p
when σ ≪ σx0. To quantify

this, in Fig. 3(c), we plot how Pave, px0, and Xave depend on
x0 and σ for A ¼ 200. This clearly shows that Pave is much
smaller than px0 and that px0 is much smaller when the ion
collapse is narrower.
We now use Pave, Xave, and the initial beam distribution

function, f0ðx; pÞ, to calculate hx2if and hp2if. As men-
tioned before, hx2if ¼ hX2

avei. To calculate hX2
avei, we sort
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FIG. 2. PWFAwith ion motion. (a) Nonlinear wake in H plasma
and the drive and trailing beam densities (ξ ¼ 0 is the center of
the trailing beam). (b) Plasma ion density in x-ξ plane (ξ ¼ 0 is
the center of the trailing beam). (c) Ff transverse lineouts at
different ξ’s and the initial beam density profile. (d) The trailing
beam’s projected and slice emittance evolutions. The plasma skin
depth is k−1p ¼ 16.83 μm in these plots.
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• Strong beams perturb ions, which create an ion density spike [1].
• Non-linear, leading to ζ-dependent emittance growth
• Mitigated with heavier ions
• Bound to happen as 𝜎& ∝ 𝛾#%/"

Fortunately
Ø A matched beam will see no emittance growth [4]
Ø Such a beam can be created with adiabatic matching [5]

2022 JINST 17 P05016

(a) (b)

Figure 7. Emittance preservation in the presence of ion motion, achieved by initializing the beam with its
equilibrium charge-density profile. In (a), projected emittance growth is plotted versus propagation distance I

shown in units of betatron skin depths (1/:V), and in (b), the slice emittance growth is for di�erent slices at
comoving longitudinal position b in units of the plasma skin depths (1/: ?). Source: ref. [70] (CC BY 4.0).

to a downstream stage or application — this would require advanced optics involving achromatic
point-to-point imaging between the stages.

Clearly, to deliver low-emittance electron beams from plasma accelerators, it will be crucial to
strike just the right balance between too little and too much ion motion.

2.4.3 Transverse beam loading

In the linear or quasilinear plasma-wakefield regime, an accelerating bunch that extracts significant
energy will not only drive its own longitudinal wake, but also its own transverse wake: this process
is called transverse beam loading. For instance, an electron bunch will expel plasma electrons from
the axis, providing a gradual increase in focusing strength within the bunch, as well as nonlinear
focusing fields throughout [72]. While this nonlinearity can be useful in damping hosing and beam
breakup [46], it will generally lead to emittance growth. Figure 8 illustrates transverse beam loading

Figure 8. Transverse beam loading in the quasilinear regime, illustrated by a PIC simulation of an electron
bunch loading the wakefield driven by a proton driver (left panel). Here, the electron bunch drives its own
(strongly nonlinear) wake which loads the wakefield both longitudinally (i.e., flattening the wakefield) as well
as transversely (i.e., altering the focusing gradient within the bunch). This causes the head of the bunch to
increase its emittance, while the tail is matched and therefore preserves its emittance (right panel). Source:
ref. [73] (CC BY 4.0).
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• Advanced beam profiles (transverse and longitudinal) can preserve emittance growth
• Such profiles can be achieved & preserved with adiabatic process (modest emittance cost)
• Can these beams be transported? Does this constraint stage design?

Source: [4]

Source: [3]

The corresponding Ff is significantly perturbed around the
axis, as seen in Fig. 2(c), where F⃗f · x̂ in the y ¼ 0 plane is
plotted for several values of ξ. The slope of F⃗f · x̂ is nearly
the same in each slice, but the maximum value and width
grows through the beam. The initial transverse density
profile of the beam is shown as a reference. From Fig. 2(c),
we can also estimate the perturbation of Ez using Panofsky-
Wenzel theorem ΔEz¼

R
dr∂Ff=∂ξ≈ΔrΔFf=2Δξ, which

is on the order of 0.002 for Δr ¼ 0.1, ΔFf ¼ 0.02, and
Δξ ¼ 0.5. The ΔEz is negligible compared to −1.0, which
is that felt by the trailing beam. This is consistent with the
lower resolution simulations where the bubble excitation is
also modeled. The basic reason for such a small perturba-
tion on Ez is that, for each slice, the total charge contained
in the ion density peak is very small, and it changes slowly
along ξ.
In Fig. 2(d), we plot the emittance growth for slices at the

same values of ξ, as well as the projected emittance. The
emittance is seen to rapidly grow and then saturate for each
slice. The projected emittance (and the slice in the middle
of the beam) grows by less than a factor of 1.8, and slices in
the rear of the beam grow only by a factor of 2.1. This
emittance growth is much less than the anticipated growth
[16,17] and that seen in Fig. 1(b) for A ¼ 200 and σ ¼ σx0.
The fundamental reason for the significantly smaller than

expected emittance growth is that the ion compression is
much narrower than the initial beam spot size. This can be

seen in Fig. 3(a), where a lineout of the ion density vs x (for
y ¼ 0) is shown in the middle of the beam; i.e., ξ ¼ 0 is
shown from the above simulation. For comparison, the
initial trailing beam profile (the dashed gray line) and the
prescribed form for the ion density (the dashed red line) for
A ¼ 135.9 and σ ¼ 0.1σx0 are also shown. The narrower
ion compression leads to a smaller value of px0 and to an
anharmonic motion, such that the time average over a
particle’s orbit is less than px0=

ffiffiffi
2

p
. We note that the ion

collapse develops a pedestal outside the core as one moves
through the bunch, although the width of the core remains
unchanged. This effectively increases σ for the later slices.
To quantify the emittance growth, we first note that

just as the emittance quickly reaches a steady state [as seen
in Fig. 2(d)], so too does the beam phase space and the
ion density. In the steady state (where the spot size does
not change), hxpxif ¼ 0, so the final emittance of the beam

is ϵNxf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ifhp2

xif
q

. In addition, in the steady state,

hx2if ¼ fhx2igt;Δt ¼ hfx2gt;Δti, where fgt;Δt represents
the time average of a quantity at time t during a duration
Δt. We can choose a Δt ¼ T that is much larger
than every particle’s oscillation period τ. Therefore,
fx2gt;T ¼ fx2gt;τ ≡ X2

ave ¼ ð
R x0
0

dx
vx
x2=

R x0
0

dx
vx
Þ ¼ ð

R x0
0 dxx2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ψðx; ξÞ− ψðx0; ξÞ%

p
Þ = ð

R x0
0 dx =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ψðx; ξÞ− ψðx0; ξÞ%

p
Þ,

where x0 is the maximum value of x, vx ¼ px=γ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ψðx; ξÞ − ψðx0; ξÞ%=γ

p
, and ψ is the wake potential

[FfðxÞ ¼ −∂ψ=∂x]. For highly relativistic beams, there is
no phase slippage, so each slice evolves independently with
a different phase space distribution. We henceforth assume
that γ does not change, so it can be brought out of the
integrals. In reality, γ changes adiabatically, and including
this in the numerical work does not alter the results.
Following analogous reasoning leads to fp2

xgt;T¼P2
ave¼

γð
R x0
0 dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ψðx;ξÞ−ψðx0;ξÞ%

p
Þ=ð

R x0
0 dx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ψðx;ξÞ−ψðx0;ξÞ%

p
Þ.

In Fig. 3(b), we plot px and x vs s ¼ z ≈ ct for an
electron starting at rest at x0 ¼ σx0 in a focusing force with
A ¼ 200 and σ ¼ 0.1σx0 or σ ¼ σx0. The s axis is normal-
ized to the period of the oscillation for each case, while px
and x are normalized to their maximum values px0 and x0.
It is clearly seen that the xðsÞ motion is essentially
harmonic for both cases, while the pxðsÞ motion is very
different for the σ ¼ 0.1σx0 (narrow ion collapse) case; i.e.,
it is anharmonic. Because the xðsÞ motion is harmonic,
Xave=x0 ≈ 1=

ffiffiffi
2

p
for both cases, while, by inspection of

Fig. 3(b), Pave=px0 ≪ 1=
ffiffiffi
2

p
when σ ≪ σx0. To quantify

this, in Fig. 3(c), we plot how Pave, px0, and Xave depend on
x0 and σ for A ¼ 200. This clearly shows that Pave is much
smaller than px0 and that px0 is much smaller when the ion
collapse is narrower.
We now use Pave, Xave, and the initial beam distribution

function, f0ðx; pÞ, to calculate hx2if and hp2if. As men-
tioned before, hx2if ¼ hX2

avei. To calculate hX2
avei, we sort
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FIG. 2. PWFAwith ion motion. (a) Nonlinear wake in H plasma
and the drive and trailing beam densities (ξ ¼ 0 is the center of
the trailing beam). (b) Plasma ion density in x-ξ plane (ξ ¼ 0 is
the center of the trailing beam). (c) Ff transverse lineouts at
different ξ’s and the initial beam density profile. (d) The trailing
beam’s projected and slice emittance evolutions. The plasma skin
depth is k−1p ¼ 16.83 μm in these plots.
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Hose instability can lead to catastrophic emittance growth

• Coupled transverse oscillations of beam centroid 

and wake centroid

• In particular for the driver

• Originally thought dramatic [1,2]

• Similar to beam breakup instability [3]

[1] D.H. Whittum, et al., PRL 67 991 (1991) 
[2] C. Huang et al., PRL 99 255001 (2007) 
[3] W. K. H. Panofsky and M. Bander RSI 39 206 (1968) 
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change of the drive-beam particles. Instead, here we find
that the energy change, which naturally occurs as the beam
excites the plasma wave, and/or an initial beam-energy
chirp, can detune the betatron oscillations of individual
slices along the beam, thereby mitigating their resonant
coupling via the plasma. We also show that beam-centroid
oscillations can significantly be reduced if the drive beam
features a subpercent uncorrelated energy spread, which
introduces a decoherence of the betatron oscillations of
individual beam electrons. Our theoretical model can
accurately explain the reduced centroid amplitude of
oscillations observed in the simulations, as shown in
Fig. 1 (see the dashed line and solid red line) and in
Fig. 2. We also propose to substantially decrease the initial
hosing seed by using tailored vacuum-to-plasma transi-
tions. We confirm all our analytical predictions with 3D
PIC simulations using OSIRIS. The parameters used in these
simulations differ from those proposed for a number of
high-energy beam facilities. Numerical demonstrations of
the hosing saturation for parameters corresponding to these
facilities are to be published elsewhere [13]. Our findings
pave the way for the stable acceleration of high-quality
beams over long distances in PWFAs and provide theo-
retical evidence for why hosing to date has not been
experimentally detected.
The starting point is the differential equation for the

transverse position x of a single beam electron relative to
the axis in a homogeneous ion channel [14,15]:

d2x
dt2

þ _γ
γ
dx
dt

þ ω2
βðx − XcÞ ¼ 0; ð3Þ

where _γ ¼ dγ=dt. The Lorentz factor γ ≃ pz=mc ≫ 1 (pz
refers to the longitudinal momentum) is decoupled from the

transverse motion, since dx=dt ≪ c. The term _γ=γ results
in a damping or amplification of the amplitude of the
single-electron oscillation, depending on whether the
electron gains (_γ > 0) or loses (_γ < 0) energy, respectively.
The restoring force is directed towards the channel centroid
Xc. The solution for Eq. (3) is

xðtÞ≃ x0AðtÞ cos ½φðtÞ& þ
px;0

mγ0ωβ;0
AðtÞ sin ½φðtÞ&

þ ωβ;0

Z
t

0
AðtÞAðt0Þ sin ½φðtÞ − φðt0Þ&Xcðt0Þdt0; ð4Þ

where ωβ;0 ¼ ωp=
ffiffiffiffiffiffiffi
2γ0

p
, AðtÞ ¼ ½γ0=γðtÞ&1=4, and γ0 and

px;0 are the initial Lorentz factor and transverse momen-
tum, respectively. The phase advance is defined by
φðtÞ ¼

R
ωβdt. The relative energy and amplitude varia-

tions occur on time scales longer than the betatron period
in relevant scenarios. Thus, the terms j_γ _A=ð _φ2γAÞj ≪ 1,
jÄ=ð _φ2AÞj ≪ 1, and j_γ=4γ0ωβ;0j ≪ 1 were neglected.
In the following, the energy of an electron is given by

γðtÞ ¼ γ0 þ Etþ δγ, where γ0 ¼ γ0ðξÞ is the initial mean
slice energy as a function of the comoving coordinate,
accounting for an initial energy chirp. The differential
change of energy along the beam is accounted by the
term Et, where E ¼ −eEz=mc, where Ez ¼ EzðξÞ is the
longitudinal electric field and where electrons are fixed to
their initial position in the comoving frame. The uncorre-
lated energy spread is incorporated through a finite
deviation of the electron energy from the mean slice energy
δγ ¼ γ − γ. All overlined quantities refer to slice-averaged
quantities.
Electrons with a small relative energy deviation jδγ=γj≪1

have a betatron frequency ωβ which deviates from ωβ

according to ωβ ≃ ωβð1 − δγ=2γÞ. Hence,

φðtÞ ¼ φðtÞ
"
1 −

δγ
2γ0

ωβ

ωβ;0

#
; ð5Þ

where φ ¼ 2ðωβ;0=ωβ − 1Þ=ϵ, ωβ;0 ¼ ωp=
ffiffiffiffiffiffiffi
2γ0

p
, and

ωβ ¼ ωβ;0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵωβ;0t

p
. Note that ωβ is time dependent

owing to a finite relative energy change per betatron
cycle ϵ¼E=γ0ωβ;0¼−

ffiffiffiffiffiffiffiffiffi
2=γ0

p
Ez=E0, with E0 ¼ ωpmc=e.

Equation (5) infers that electronswith differing energywithin
a slice acquire a differing phase advance, which leads to the
phase mixing of the betatron oscillations along the beam.
This phase mixing can damp the HI, similarly to the HI
damping occurring in fully self-modulated beams through a
change of the betatron frequency for each self-modulated
beamlet [16].
To assess the effect of the phase mixing onto the HI, the

beam centroid Xb is deduced from Eq. (4) by averaging with
respect to an initial phase-space distribution f0ðx0; px;0; γ0Þ
within each beam slice, Xbðξ; tÞ ¼

R
xf0dx0dpx;0dγ0, withR

f0dx0dpx;0dγ0 ¼ 1. We assume that the initial transverse

FIG. 1. Result from a 3D PIC simulation showing plasma and
beam charge densities at the time ωβ;0t ¼ 71.6. The beam has an
initial spatial centroid offset, introduced at the position ξ ¼ 0, and
is subject to hosing. Beam charge density nb is projected onto the
shown x − ξ plane. Lines indicate XbðξÞ, as a result from the
models in Refs. [7,8] (orange solid curve) and [11] (green solid
curve), respectively. Depicted is also the result from Eqs. (1) and
(7), derived within this work (red solid curve), and XbðξÞ
retrieved from the PIC simulation (black dashed curve). Inset:
Enlarged depiction of the beam centroids.
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Hose instability mitigation through BNS damping

𝜔5 = 𝑓(𝜁)

[1]: linear regime: saturates as 𝐹& = 𝑓(𝜁) due to transverse beam loading

[2]: blowout regime: saturates as 𝛾 = 𝑓(𝜁) due to strong chirp (driver)

[3]: Large beam driver for 𝐹& = 𝑓(𝜁)

[4]: ion motion suppresses it 

where Wx ¼ Ex − By is the transverse wakefield acting on
the beam electrons, ϵx ¼ ½hx2ihp2

xi − hxpxi2#1=2=mc is the
phase-space emittance for each slice, γ the Lorentz factor of
the monoenergetic beam, kp ¼ ωp=c ¼ ð4πn0e2=mc2Þ1=2
the plasma wave number, and E0 ¼ ωpmc=e the cold
nonrelativistic wave breaking field, with e and m the
electronic charge and mass, respectively, c the speed of
light, and n0 the ambient plasma electron density. For
simplicity, the increase of beam energy is neglected here,
which otherwise results in an adiabatic damping of Xb and
σx. In the quasistatic approximation, and assuming non-
relativistic ion motion and beams short compared to the
plasma ion wavelength, an expression for the transverse
wakefield is given by [14]

Wx

E0

¼
kpðx−XpÞ

2
−Zi

m
Mi

k2p

Z
ζ

∞
dζ0ðζ−ζ0Þ

Eb;xðζ0Þ
E0

; ð2Þ

where ζ ¼ z − ct is the longitudinal comoving coordinate,
Zi denotes the ionization level of the background ion
species, Mi the ion mass, and Eb;x the beam transverse
electric field. Here Xp is the centroid of the plasma
wake [20,21]. Figure 1 illustrates the relative centroids of
a witness beam slice and the plasma wakefield. Ion
motion causes a nonlinearity of the wakefield, which,
in general, is shifted from the beam and plasma wake
centroids.
We consider a cylindrically symmetric beam distribution

with a small slice-dependent centroid perturbation δXb ¼
Xb − Xb0 with respect to the beam propagation axis Xb0 ¼
Xbðζ ¼ ζ0Þ (ζ0 being the location of the bunch head),

nb ≃ n&b − δXb cosðθÞ
∂n&b
∂r ; ð3Þ

where n&bðζ; rÞ ¼ ÎbgkðζÞg⊥ðζ; rÞ=ec is the cylindrically
symmetric distribution with the peak beam current Îb,
an arbitrary longitudinal profile gkðζÞ ≤ 1, and a
slice-dependent Gaussian transverse profile g⊥ðζ;rÞ¼
exp½−r2=2σ2xðζÞ#=2πσ2xðζÞ, where r¼½ðx−Xb0Þ2þy2#1=2 is
the radius with respect to the beam propagation axis.
The transverse electric field of the beam with a centroid
perturbation is

Eb;x ≃ cosðθÞE&
b;r − δXb

!
cos2ðθÞ ∂

∂rþ
sin2ðθÞ

r

"
E&
b;r; ð4Þ

where E&
r;b is the radial field induced by the relativistic

cylindrically symmetric Gaussian beam [14],

E&
b;rðζ; rÞ
E0

¼ 2Îb
IA

gkðζÞ
exp ½−r2=2σ2xðζÞ# − 1

kpr
; ð5Þ

with the Alfvén current IA ¼ mc3=e ≃ 17 kA. Combining
Eqs. (2)–(5) yields

hWxi
E0

≃
kp½XbðζÞ − XpðζÞ#

2

þ Zi
m
Mi

Îb
IA

kp

Z
ζ

∞
dζ0ðζ − ζ0Þgkðζ0Þ

XbðζÞ − Xbðζ0Þ
σ2xðζÞ þ σ2xðζ0Þ

ð6Þ

and

kphðx − XbÞWxi
E0

≃
k2pσ2xðζÞ

2

þZi
m
Mi

Îb
IA

k2p

Z
ζ

∞
dζ0ðζ − ζ0Þgkðζ0Þ

σ2xðζÞ
σ2xðζÞ þ σ2xðζ0Þ

:

ð7Þ

In Eqs. (6) and (7), terms O½δX2
bðζÞ# ≪ Oðσ2xÞ and

O½δXbðζÞδXbðζ0Þ# ≪ Oðσ2xÞ were neglected. Employing a
model for the plasma wake centroid evolution along the
beam, e.g., Refs. [20,21], Eqs. (1a) and (1b), with Eqs. (6)
and (7), form a closed set of equations for σxðζ; zÞ, Xbðζ; zÞ,
and Xpðζ; zÞ.
Note that for straight beams, Eq. (8) implies that hWxi is

identical to kpðXb − XpÞ=2. However, if slices are mis-
aligned with respect to the head of the beam, e.g., owing to
hosing, various slices experience differing average wake-
fields. This head-to-tail variation in average wakefields
can result in decoherence and suppression of the hosing
(beam centroid) growth. Despite having the same effect of
suppressing hosing through a head-to-tail decoherence, the
above described mechanism is fundamentally different
from the mechanism in the regime of linear plasma
waves. In the linear regime, the decoherence is induced
by a head-to-tail variation of the transverse wakefield and

FIG. 1. Illustration of a wakefield Wx with hosing and non-
relativistic ion motion. The zero crossing of the homogeneous ion
channel wakefield (dashed blue line) is shifted by the plasma
electron centroid Xp due to hosing. In addition, ion motion causes
a nonlinearity of the wakefield [solid blue line; see Eq. (2)]. Also
depicted is a Gaussian distributed beam slice (black curve) with
centroid Xb, subject to the force exerted by Wx.
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Other sources/sinks of emittance within accelerator stage

Radiation cooling

• Particles with larger betatron amplitude loose 
more energy to synchrotron radiation

• Classical radiation reaction

à Growth in energy spread

4+
6
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2.5 Coulomb scattering

Conventional accelerators typically operate in an ultra-high vacuum environment — scattering of
beam particles o� gas atoms occur only rarely. This also goes for most dielectric-based advanced
accelerators. In plasma-based accelerators, however, on-axis gas ions and atoms are abundant,
and even required for focusing. Coulomb collisions between beam particles and atoms or ions
result in either an elastic small-angle deflection of the particle, or (less often) an inelastic collision
with energy loss. Assuming mainly elastic scattering, and averaging over many such collisions
longitudinally, so-called multiple Coulomb scattering, results in an increase in the beam’s divergence
at a rate [75–77]
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where / is the atomic number, /8 is the ion charge state, '0 ⇡ 10�10 m is the atomic radius, and _ is
the Debye length (for a neutral plasma) or the plasma wavelength (for an ion channel). Here, the first
term is from ion scattering and the second term from neutral atom scattering. For gases heavier than
hydrogen or helium, the ion-scattering term is usually negligible (assuming singly ionized plasmas).
The normalized emittance growth rate can be estimated by
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where VG is the Twiss beta function. This e�ect has been included in PIC codes such as WarpX [78],
showing emittance growths in line with the analytical model [79].

Suppressing emittance growth from scattering is most easily done by decreasing the ion mass,
by for instance using hydrogen. However, this simultaneously promotes ion motion (section 2.4.2),
which also needs to be taken into consideration. Perhaps surprisingly, decreasing the plasma density
(:2

?
/ =) is ine�ective, since that results in a lower gradient (⇢I / : ?), hence a longer accelerator,

as well as a larger matched beta function (V< / 1/: ?): overall, this cancels out and the integrated
emittance growth remains unchanged.

For typical beam and plasma parameters, including those relevant to linear colliders, the
emittance growth due to scattering will be negligible inside the stages, mainly due to the very
small beta function [76, 80]. However, when considering multiple stages with potentially long
plasma-density ramps (section 2.3.1) or plasma-lens-based staging optics (section 3.3), in which the
beta function will be significantly larger, scattering may become a problem.

2.6 Radiative cooling

In advanced accelerators with strong on-axis focusing, particularly plasma accelerators, synchrotron
radiation will be emitted by particles that oscillate o� axis [81]. The momentum lost through the
emitted photon will be both in the longitudinal and transverse planes. However, the accelerating
field is (ideally) purely longitudinal, which implies a damping of the transverse emittance [82]. This
is how traditional damping rings [83] operate — large circular accelerators that produce the lowest
emittances available.

It is currently unclear whether this technique can truly be used for emittance damping in a
linear plasma accelerator, due to the limited length (and time) available for damping as well as the
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parameter and laser wave number, respectively !18".
The differences in the definition of the strength param-

eters illustrates some of the fundamental differences that ex-
ist between laser-Thomson scattering and a plasma-focusing
channel. For Thomson scattering, cooling is effective when
the spot size of the laser is large compared to the radius of
the electron beam. In this case, the laser strength parameter
a0 #which is the normalized vector potential of the laser,
a0=eA0 /mc2 where A0 is the maximum amplitude of the vec-
tor potential$ is approximately independent of radial posi-
tion. In contrast, for a focusing channel, the betatron strength
parameter is linearly proportional to the amplitude of the
transverse oscillation of the electron, which is a strong func-
tion of the initial radial position of the electron. For example,
an electron injected on the axis with no transverse momen-
tum will move straight along the channel axis, without any
oscillation and hence without any damping. On the other
hand, the damping will be much stronger for particles in-
jected farther from axis.

Alternatively, the radiative damping rate can be derived
by considering the power radiated by a moving charge,
which in the classical limit is !19"

Ps =
2e2

3c
!2%&du

dt
'2

− &d!

dt
'2( . #14$

Using mc!̇=Fext ·u /!, where Fext is the external force on the
electron, gives

Ps =
2e2!2

3m2c3 !)Fext)2 − )Fext · u/!)2" . #15$

When the force is transverse only, Fext=F!ex, and for a
relativistic electron with ux

2"!2, the radiated power can be
written

Ps *
2e2!2

3m2c3F!
2 . #16$

The characteristic damping time can be defined as the ratio
of the radiated power to the electron energy, #!= Ps /!mc2,
which yields the radiative damping rate !20,21"
#!=$R!F!

2 /m2c2. Substituting the transverse force from the
plasma focusing channel, F!=−mc2K2x, and time averaging
over a betatron oscillation, yields Eq. #13$.

3. Particle orbits with radiation

Assuming !*uz, Eqs. #7$ and #8$ can be recast into a
coupled set of equations,

ẍ + $Rc2K2ẋ + K2c2x/! = 0, #17$

!̇ = − $Rc2K4x2!2. #18$

The position-independent damping term in Eq. #17$,
$Rc2K2ẋ, is small and can be neglected. It is convenient to
introduce the normalized variables X=x /xm, %=! /!0,
$=&'t, and (=#! /&', such that Eqs. #17$ and #18$ can be
rewritten

X! + %−1X = 0, #19$

#%−1$" = 2(X2, #20$

where the prime notation designates the derivative with
respect to $.

To solve Eqs. #19$ and #20$, we consider a separation of
time scales: The fast betatron oscillations of the order &'

−1

and the slow radiation damping of the order #!
−1, such that

(=#! /&'"1. Consider a perturbation series in ( such
that X*X#0$+(X#1$ and %*%#0$+(%#1$. The zeroth-order
equations are #X#0$$!+X#0$ /%#0$=0 and #%#0$$"=0. With
the initial conditions discussed above, the solutions are
X#0$=cos#$+)$ and %#0$=1.

The first-order #in ($ equations are

#X#1$$! + X#1$ − %#1$cos#$ + )$ = 0, #21$

#%#1$$" = − 2 cos2#$ + )$ , #22$

with the solutions

%#1$ = − $ +
1
2

!sin#2)$ − sin#2$ + 2)$" , #23$

X#1$ = XAcos#$ + )$ + XBsin#$ + )$ +
1
32

sin!3#$ + )$" ,

#24$

where

XA = −
$

8
−

1
32

sin#4)$ , #25$

XB =
1
32

cos#4)$ +
$

4
sin#2)$ −

$2

4
. #26$

Combining the zeroth and first-order solutions yields

X = X̂ cos!$ + ) − arctan *" , #27$

where X̂= !#1+(XA$2+(2XB
2"1/2, *=(XB / #1+(XA$, and the

third-harmonic term has been neglected. Note that the first-
order quantities will remain small, and the above solution
valid, provided that ($2= ##!t$#&'t$"1. Assuming ($2"1,
the above expressions can be expanded to yield

x * xm#1 − #!t/8$cos!#1 + #!t/4$&'t + )" , #28$

!

!0
* 1 − #!t +

1
2

#!

&'
!sin#2)$ − sin#2&'t + 2)$" . #29$

These equations also imply, to first order in (,

ux * − #!0xm&'/c$#1 − #!t/2$sin!#1 + #!t/4$&'t + )" .

#30$

Time averaging Eq. #29$ yields Eq. #12$, and, typically, the
fast oscillations in the energy evolution can be neglected.
The first-order expressions for x and ! given by Eqs. #28$
and #29$ are adequate for an accurate description of the be-
havior of a beam, e.g., evolution of the beam emittance and
energy spread, as shown below.

RADIATIVE DAMPING AND ELECTRON BEAM¼ PHYSICAL REVIEW E 74, 026501 #2006$

026501-3

Coulomb scattering

• Increases beam divergence as

• And related emittance growth (matched beam)

• Does not depend on matched density

• In practice, prevents the use of high-Z species

• Mitigation: hollow core plasma channels

B.W. Montague Proceedings of CAS-ECFA-INFN pp. 208–218 (1984)
C.B. Schroeder et al., JINST 17 P05011 (2022)
C. B. Schroeder et al., PRSTAB 13, 101301 (2010)
P. Michel et al., PRE 74, 026501 (2006)
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Ø Relatively large divergence and large energy spread beams

Ø Sources of emittance growth during coupling:

• Drift space + energy spread

• Chromatic focusing

• For plasma-based focusing optics: all of the above

• Mismatch in the following stage

Ø Mitigated with advanced beam optics

Inter-stage coupling is also a source of emittance growth

2022 JINST 17 P05016

leaking positional dispersion of 10 mm: the emittance would grow by 294 mm-mrad. Moreover, any
o�set in energy would result in a misalignment, which causes yet more emittance growth. Clearly,
dispersion must be cancelled to a very high degree. Plasma density ramps may be used to mitigate the
problem, but eq. 3.2 indicates that this merely shifts emittance growth between the ⇡G and ⇡G

0 terms.
Coherent synchrotron radiation [92, 93], a result of short bunches passing through strong

magnetic fields, may introduce further dispersion and emittance growth [94].

3.1.2 Plasma mirrors

Mirrors can be used to couple in and out laser drivers, often much more compactly than using
dipoles. However, the laser intensity is too high close to the accelerator stage for using regular
optical mirrors — the mirrors need to be placed several meters away (indeed the case in many
single-stage laser-plasma-accelerator experiments). Instead, for compactness, plasma mirrors have
been proposed [95]. Typically composed of a thin foil, the material is instantly ionized by the laser,
which is then reflected by the resulting high-density plasma, while the particle bunch is allowed to
pass straight through. This scheme was employed in the first successful demonstration of staging,
performed at Lawrence Berkeley National Laboratory [96] (see figure 12). In this experiment, plastic
tape was used as a plasma mirror to transversely couple in the second laser driver approximately
1 cm upstream of the second accelerating stage.

However, plasma mirrors can result in emittance growth for particle beams passing through
them, both from Coulomb scattering (section 2.5) as well as the so-called current filamentation
instability [97, 98], which can occur when the beam size is larger than the plasma skin depth,
breaking the beam into many thin filaments. To avoid these issues, plasma mirrors must be made
extremely thin — for instance by use of liquid-crystal films [99], which can be made as thin as 10 nm.
Emittance measurements of a laser-plasma-accelerated electron bunch has shown that the emittance

Sp
ot

 si
ze

 (m
m

)

z (m)

Capillary

Ta
pe

Je
t (

ce
nt

re
)

90 MeV

0.00 0.02 0.04 0.06 0.08
0.00

0.05

0.10

230 MeV

Laser 1

Lanex screen
(removable)

Plasma-mirror
tape

Plasma
lens

Stage I:
gas jet

Laser 2

Lanex screen

Magnetic
spectrometer

Lens
130 MeV

110 MeV

Stage II:
discharge capillary

Figure 12. Schematic setup of a staging experiment using two independently laser-driven stages. An electron
bunch injected in the first stage was focused using an active plasma lens. Since the energy spread of this bunch
was large, the focus at the entry of the second stage was highly chromatic (see inset), resulting in significant
emittance growth and consequently poor charge coupling (around 3.5%). A plasma mirror was used to couple
in the second laser driver, which further contributed to emittance growth. Source: ref. [96] (reproduced with
permission).
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which oscillates at twice the rate of the usual phase advance. However, the chromatic amplitude is
su�cient for calculating the relative projected (squared) emittance growth [104],

�(n2
)

n
2
init

= ,
2
f

2
X
+ O(f

4
X
). (3.4)

In beam optics with linear focusing, the chromatic amplitude grows by approximately �, = VG/ 5 ,
where 5 is the focal length — this implies that combined strong focusing (i.e., short focal length) and
large beta functions result in large chromaticity and hence large emittance growth if left unmitigated.
Staging, in its simplest form, can be considered as a single lens of focal length 5 = !/2, where ! is
the distance from the accelerator to the lens (the distance between stages is 2!), as illustrated in
figure 13. In this case, the emittance growth from chromaticity in staging can be estimated to be

�(n2
)

n
2
init

=
4!2

V
2
<

f
2
X

(3.5)

to lowest order, given that , ⇡ 2!/V< since the beta function diverges in vacuum from V< ⌧ ! to
approximately !

2
/V< at the position of the lens. The example in figure 13 demonstrates that this

emittance growth can be substantial for a typical plasma accelerator.

It should be noted that the emittance growth is only for the projected beam (i.e., there is no
emittance growth within an energy slice). Only when the beam enters the following stage will the
phase space be “scrambled” and the emittance growth made irreversible. If, however, the phase-space
rotation could be reversed, the emittance could in principle be preserved. While this is impossible
to do using linear optics, the chromaticity itself can be cancelled for a small range of energies
(typically fX ⇡ 1/,) using a su�cient number of lenses; a technique known as apochromatic
correction [104, 105], often used in camera lenses.

To truly mitigate the e�ects of chromaticity, nonlinear optics is required. Normally, sextupole
magnets are used in combination with dipoles, whereby particles of di�erent energies are dispersed
across the aperture of the sextupole, which has a di�erent focal length at di�erent transverse o�sets.
This technique enables focusing of a wide range of energies achromatically, and is therefore the
go-to method for final focusing in linear colliders — a problem with fairly similar constraints to
that of staging between advanced accelerators. A particularly potent concept is local chromaticity
correction [106], where families of identical sextupoles are separated by 180 degrees of phase
advance in order to cancel the deleterious e�ects of the higher-order geometric terms (i.e., G2, H2,
and GH) from the nonlinear sextupole field.

Both apochromatic and nonlinear chromaticity correction can take up significant space between
stages, which decreases the average accelerating gradient of a multistage accelerator. Minimizing
the intrinsic chromaticity can reduce the need for corrective optics and possibly shrink the distance
between stages. Equation 3.5 indicates three approaches:

• Lower energy spread. Reducing the energy spread will reduce the emittance growth inde-
pendently of the optics between the stages. However, this demands precise flattening of
the wakefields [47] and may not be compatible with the large energy-chirp required when
employing BNS damping (section 2.2.1).

– 21 –

[1] S. Steinke et al., Nature 530 190 (2016)
[2] M. Migliorati et al. PRSTAB 16 011302 (2013)
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Encouraging: recent demonstration of emittance preservation
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Experimental setup:      1 GeV beam driver with 400 pC charge
50 mm plasma cell: peak density ~ 1.2 ×10-.𝑐𝑚/0 (with ramps)

Stable operating point: 40 MeV energy gain, 22% transfer efficiency
(1.4 GV/m estimated peak field)

Preservation of:            Charge (40 pC), in 41% of shots
Energy spread (0.12% FWHM or lower), in 62% of shots
Emittance in x dfirection

Material provided by Carl A. Lindstrøm, Univ. Oslo
Experiment at FLASHForward‣‣

Lindstrøm, Carl Andreas, et al. "Preservation of beam 
quality in a plasma-wakefield accelerator." (2022).
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Conclusion
Ø Various effects cause emittance growth, but mitigation methods exist

Misalignment/mismatch, non-linear focusing fields, Coulomb collisions, coupling
Preliminary studies suggest tolerances on the order of 10 nm and 1 µrad (can be relaxed, e.g. plasma shaping)

Ø Energy spread can also lead to emittance growth via phase mixing
Sources of energy spread must also be monitored
Preliminary studies suggest tolerances on the order of 10/0 (initial) and 10/1 (per stage)

Ø Recent results show encouraging results
Hose instability can be mitigated, with a potential cost on emittance/shaping
Emittance preservation in a full plasma stage was demonstrated

Ø Interplay between different effects would need to be scrutinized
Understanding and mitigation methods for separate sources of emittance growth
Coupling & transversely tailored profiled; coupling and longitudinally-tailored profile; …

Thank you for your attention


