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Status: electron acceleration

* The e blow-out regime: high-gradient, high-efficiency, low emittance growth, low e energy
spread have been shown on paper, and demonstrated to increasingly good level in experiment.
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Status pOS|tron acceleratlon See also Severin’s talk
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J. Vieira et al, Phys. Rev. Lett. 112, 215001 (2014).
C.S. Hue,1, G. J. Cao et al., Phys. Rev. res. 3, 043063 (2021)

Quasi-linear plasma
wakefield

How to accelerate low emittance
beams with high efficiencye

Multi-pulse, energy recovery.
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S. Gessner et al., to be submitted

Hollow plasma
channels

How to mitigate
fransverse instabilitiese

Position trailing bunch at zero-
crossing of transverse wakefield,
look for damping mechanismes,
flat channels.
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Nonlinear plasma
wakefield

How to preserve emittance?

Doughnut-shaped wakes, weird
trailing bunch shaping, single-
stage accelerator, betatron
cooling.

* Good progress in e*, but no clear path to achieving same beam quality/efficiency as e” blow out regime
* Fewer experimental results, less good match/theory -> harder to rely on simplified models

e- arm: better performance, better suited for modelling



The e- linac arm

Example of interstaging ideas :
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wnenc Chlcanes' 2 ns dE|ay = [222]. The beta functions (left), chromatic amplitude (middle) and dispersions
. . (right) are all simultaneously matched or canceled (to first order), but the system
M ain e- plasma accele ratlon 2 is long and complex—not ideal for compact staging.
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interstage model
full length to correctly estimate longitudinal and transverse stability (BBU, static imperfections, jitter)

all known physics like ISR, CSR, scattering, betatron radiation should be included (at the appropriate level of modelling)
technical constraints on plasma sources, DB generation etc. taken into account (e.g. from high-rep rate experiments)



Agile development of plasma-based linacs/colliders

e\When the machine concept is not yet clear, agile development is most appropriate:

eStart broad and inaccurate—Ilearn by failure and quick iteration

eGradually introduce accuracy—don’t spend time/resources until basics are settled

*Need a conglomerate of different codes at varying levels of speed and accuracy.

e\We are currently developing a local UiO plug-and-play framework for start-to-end simulations:

eActively selecting the accuracy/code based on requirements for the effect studied.

eUsing accurate codes to quickly develop and benchmark (faster) reduced models.
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Start-to-end simulation of a plasma linac (preliminary example)

eExample:

¢50-stage plasma linac (280 GeV)
¢5.5 GeV per stage

*ELEGANT for interstage
eNonlinear plasma lenses
*CSR/ISR included

eNonlinear 1D wake model

e Multiple samples with jitter:
*3 fs rms driver synch.
50 nm rms alignment

*1% rms plasma density
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Main question:
performance of plasma e- linac vs RF e- linac?

How much more compact? More or less efficienct? How much less costly?
Are the improvements sufficient to stir more interest from the HEP community?

Answer depends strongly on which machine the e- linac is part of - assymetric Higgs-Factory, Multi-TeV gg ... ?

J. Rosenzweig et al. |Nucl. Instr. and Meth. in Phys. Res. A 410 (1998) 532543

Facility length: ~3.3 km
Turn-around loops

Positron  Damping rings (31 GeV e*/drivers)
source (3 GeV) Driver source, REi
Interaction point RF linac (5 GeV) inac Electron Wake-field modules Gamma converter and Detector
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( eVe) Scale: 500 m (I'f kickers)
Heavily Beam-loaded Electron Linac
Compressor

Rf photoinjector

At Oslo we work mainly on modelling and simulation of the beam-driven e- linac.
We need to do the work in a context of a machine, and will also be involved in
looking at different concepts.

An better understanding of the linac is a pre-requisite for estimating overall
parameters for the machine, or talking about a pre-CDR for the overall machine.






HEP community wish: e- e* Higgs factory as the next machine
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Indicative scenarios of future B proton collider
colliders [considered by ESG]
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Schematic of the FCC-ee collider with the details of the crossing schemes at the interaction points.

== Construction/Transformation
Electron collider Preparation / R&D
= Muon collider Original from ESG by Urusla Bassler
Updated July 25, 2022 by Meenakshi Narain
Corrected FCC tunnel length, by F.Z.
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