

Proton-Driven Experiments at AWAKE: Roadmap Related Activities

ALEGRO 2023 Workshop

22 – 24 March 2023

Edda Gschwendtner, CERN Patric Muggli, MPP

AWAKE at CERN

- →AWAKE is an international Collaboration, consisting of 23 Institutes.
- → Developed a clear scientific roadmap towards first particle physics applications within the next decade.
- ➔ In AWAKE many general issues are studied, which are relevant for concepts that are based on plasma wakefield acceleration.

AWAKE Run 2 (2021 – ~2029) Goals:

- Accelerate an *electron beam to high energies (gradient of 0.5-1GV/m)*
- while controlling the *electron beam quality (1-10 mm-mrad emittance, 10% energy spread)*
- demonstrate *scalable plasma source technology.*

Once AWAKE Run 2 demonstrated: First application of the AWAKE-like technology. → develop physics case for particle physics experiments

AWAKE Run 2 Scientific Roadmap – Milestones

- √ Run 2a (2021-2022): demonstrate the *seeding of the self-modulation of the entire proton bunch with an electron bunch*
- Run 2b (2023-2024): maintain large wakefield amplitudes over long plasma distances by introducing a step in the plasma density
- CERN Long Shutdown LS3 (2025-2027): CNGS dismantling, installation of Run 2c
- Run 2c (2028-2029): demonstrate *electron acceleration and emittance control of externally injected electrons*.
- Run 2d (2021-): development of scalable plasma sources to 100s meters length with sub-% level plasma density uniformity.
- → Propose first applications for particle physics experiments with 50-200 GeV electron bunches!

E. Gschwendtner, CERN

AWAKE Run 2a

Laser beam

Proton beam

hν

fully self-modulated proton bunch

Demonstrate electron seeding of self-modulation in first plasma cell with phase reproducibility.

L. Verra et al. (AWAKE Collaboration), Phys. Rev. Lett. 129, 024802 (2022)

Other Key Challenges:

➔ Plasma Density Ramp

Maintain large wakefields

- \rightarrow In constant-density plasma, wakefield amplitude decreases after saturation.
- → In a plasma with density step within the SM grow: wakefield amplitude maintains larger after saturation.

Run 2b (2023-2024) – New Plasma Source with Density Step

New Rubidium vapor source designed and under construction now.

MPP Munich and WDL, UK

Stand alone prototype tested at CERN in 2021

M. Bergamaschi, P. Muggli, J. Pucek, MPP & WDL

- Length: ~ 10 m
- Independent electrical heater of 50 cm from 0.25 to 4.75 meters
- 5.3m of galden heated section
- Step height up to ±10%
- 10 diagnostic viewport, for plasma light + 3 for density diagnostic

Discharge Plasma Source Tests in May 2023

R&D on *scalable, several-meter long plasma sources*: discharge plasma and Helicon plasma sources. *Discharge Plasma Source (DPS)*: possible candidate for 2nd plasma source in Run 2c/d

Unique run in May 2023 with the discharge plasma source. Run is finished after 3 weeks, no 2nd chance

Enables unique physics:

- \rightarrow Vary plasma density over wide range
- \rightarrow Study Sel-modulation at different lengths: 6.5m, 3.5m 10m
- \rightarrow Study plasma ion motion: Ar(40), Xe(131), He(4)
- → Filamentation of very high densities
- \rightarrow Study plasma light, wakefied amplitude all along the plasma.

Preparing for AWAKE Run 2c, 2d \rightarrow CNGS Dismantling

Area content (~600m³):

- ~500 large shielding blocks (0,05-0,6 mSv/h)
- A few high dose-rate elements (2-20mSv/h)
- 70-meter-long aluminum He-tank
- Various supports, ducts...

CNGS Dismantling: Q2024 – mid 2026 → Approved in CERN's Mid-Term Plan (11MCHF)

AWAKE Run 2c – Accelerating Electrons

External injection of witness electron

Preserve electron beam quality (emittance preservation at 10 mm mrad level)

Electron parameters must be suitable to reach full blow-out regime (ensure linear focusing), load the wakefields (\rightarrow small $\partial E/E$), Match to focusing force of the plasma ion column

Studies/Prototyping ongoing to be ready for installation in 2026/27

New electron-source:

AWAKE Run 2d: Towards first Particle Physics Experiments

→ Further develop particle physics experiment requirements

1 m helicon plasma cell from IPP-Greifswald

Program and Budget

AWAKE has a clear plan towards first particle physics application

- AWAKE Run 1: Proof-of-Concept
- AWAKE Run 2 (2021-2030): aim to high-energy, high-quality electrons and develop scalable plasma sources

Budget and Workforce Situation at CERN:

- AWAKE has been extended in CERN's timeline until 2030
- CNGS dismantling has been approved in 2022 and is part of the AWAKE project
 - Additional 11MCHF were added
 - Dismantling work starts end 2024
- ~1/2 CERN material budget available for Run 2c-d, still missing other half (~12MCHF).
 - Request added in this year's CERN Mid-Term-Plan (MTP).
- Would be good to have a post-doc looking into particle physics applications
- Contributions from collaborating institutes are important (UK just got their full 4MPound grant approved)
 - however, we rely on contributions from collaborating institutes
 - need to continue securing funding for next decade!

Thank You!

Physics Cases

Many opportunities for first particle physics applications in the nearer future:

- ightarrow Beam quality sufficient for fixed target experiments
- → Currently for O(100) GeV electrons by scattering SPS protons on a target: inefficient and very low yield
- → Beam Dump Experiment: Search for dark photons.
 → Decay of dark photon into visible particles (e.g. e+/e-)

Extension of mixing strength of the kinematic coverage for 50 GeV electrons and even more for 1 TeV electrons

- → Investigate non-linear QED in electron- photon collisions.
- ➔ Produce TeV-range electrons with an LHC p+bunch: use for lower luminosity measurements in electron-proton or electron-ion collisions.

 $\mathcal L$ Limited by proton accelerator repetition rate – look for high-cross-section processes to compensate.

"Particle Physics Applications for proton driven PWA", Allen Caldwell, Tuesday 9:00