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2 Motivation

● Small time-to-insight drives high physics potential:

■ Tuning of existing methods

■ Investigations of new methods


● Ultimate goal: Analysis in duration of a coffee break

● Also: Crucial for HL LHC analyses

Data ~ O(TB) Results ~ O(kB)
Input Analysis Output

Faster = Better
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3 Physics Analysis & Team

● Analyses have common challenges:

■ Many inputs:

－ Simulations and recorded data

－ Meta data (Efficiency factors, Corrections, ...)


■ Heavy computations (Event reconstruction, MVA algorithms, ...)

■ Bookkeeping


● Shared software repository

Team (Standard CMS institute)
Higgs Pair Production Higgs Strahlung Various
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New MVA methods,

Jet-Flavour tagging,


...

Prof.

https://git.rwth-aachen.de/3pia/cms_analyses/common
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Pre-
Process

4 Analysis Structure (1/2)

● Inputs: Event data, meta data

● O(100) different computing steps:


■ Preparation of meta data

■ Pre-processing of event data

■ Main-processing of event data


● Outputs: Histograms, plots, ...

● Tasks connected using law

Pre-
Process

Prepare

Process

PreparePrepare

Pre-
Process

● Full analysis

● Development (repeated)

● Debugging (repeated)

● Plotting features of data

Typical workflows

https://github.com/riga/law
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5 Analysis Structure (2/2)

● Make-like execution of whole analysis (law run FullAnalysis)

● Visual task graph representation using Luigi Scheduler


■ Used for overview of run status, structural improvements, debugging

excerpt from HH analysis

https://luigi.readthedocs.io/en/stable/central_scheduler.html
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Pre-
Process

6 Analysis Structure - Inputs

● Different kinds of inputs:

■ Event data O(10TB):

－ Recorded data & Simulation

－ NanoAOD format ~1kB per event


■ Meta data O(MB):

－ Efficiency measurements, scaling factors, ...

－ Twiki pages, JSON files, Custom ROOT files, ...

Pre-
Process

Prepare

Process

PreparePrepare

Pre-
Process
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Preparation tasks 
● Prepare information for main processor

● Download files, Change formats

● e.g. Trigger eff. (ROOT to coffea hist)
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6 Analysis Structure - Inputs

● Different kinds of inputs:

■ Event data O(10TB):

－ Recorded data & Simulation

－ NanoAOD format ~1kB per event


■ Meta data O(MB):

－ Efficiency measurements, scaling factors, ...

－ Twiki pages, JSON files, Custom ROOT files, ...

Pre-
Process

Prepare

Process

PreparePrepare

Pre-
Process

Preparation tasks 
● Prepare information for main processor

● Download files, Change formats

● e.g. Trigger eff. (ROOT to coffea hist)

Pre-processors 
● Pre-structuring data

● Read intensive and repetitive

● e.g. Count PileUp, ...
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7 Analysis Structure - Processor Map

● Processor maps perform real computing payload

● Fast:


■ Vectorised processing (awkward, numpy)

■ Central GPU server for MVA evaluation


● Parallel processing in two levels of hierarchy:

■ Datasets (ttbar, ST, DY, ...)

■ Chunks (100k events)

reduce

map

map

map

Process

chunk 1

chunk 2
chunk 3
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8 Analysis Structure - Processor Reduce

● Reduces objects returned by map steps:

■ Histograms, event counts, cutflow statistics, ...


● Histograms are special case:

■ Can be multidimensional and very large O(GB)

■ Implemented fast histogramming methods (here):

－ hist with h5py backend

－ e.g. Expand, merge, compression, ...

reduce

map

map

map

Process

chunk 1

chunk 2
chunk 3

https://git.rwth-aachen.de/3pia/cms_analyses/common/-/blob/master/utils/bh5.py
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9 Map Scale Out: HTCondor + Dask

● Maps can be parallelised over multiple worker nodes

● Using HPC cluster with one portal node and worker pool

● Two step process:


1. HTCondor opens jobs in worker pool (1 CPU Thread, 1.5 GB RAM)

2. Dask uses HTCondor slots 

Worker poolPortal

User Session
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10 Map Scale Out: Reducing

● Outputs of parallel map jobs (e.g. histograms) must be reduced

● Ten parallel reducers on portal node

● Each reducer has two reducing instances:


■ Normal reduce: map jobs finished regularly, reduce job pulls

■ Early reduce: map jobs need space, map job pushes

Worker poolPortal

User Session HTCondor Job

HTCondor Job

Dask Job

Dask Job

Reducer

Reducer

HTCondor Job

Dask Job

HTCondor Job

Dask Job
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11 Software Stack

● Everything implemented in python (analysis repository)

● Modular software framework:


■ Standard tools: NumPy, matplotlib, Dask, HTCondor, ...

■ HEP specific tools: AwkwardArray, uproot, mplhep, coffea, ...

Benjamin Fischer, 24th Sep. 2020
Software Stack8

Leverage python ecosystem:
● existing tools as basis: NumPy, matplotlib, Dask(, HTCondor)
● HEP specific modularized tools usable across Analyses (& Experiments)

○ AwkwardArray, uproot, mplhep, coffea (https://github.com/scikit-hep)
● minimizes code maintenance needs
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https://git.rwth-aachen.de/3pia/cms_analyses/common
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12 Resource: VISPA Cluster (1/2)

● All analyses run on local institute cluster

● Optimised for scientific data analysis and machine learning

● Hardware: see below

● Software:


■ System (Ubuntu OS) via ansible

■ Analysis via conda, shared over network

Portal node 
● CPU: 64T

● RAM: 128GB

Storage 
● HDD: 120TB

● SSD: 2TB

4x Worker (small) 
● CPU: 8T

● RAM: 64GB

● SSD: 1TB

2x Worker (med) 
● CPU: 64T

● RAM: 192GB

● SSD: 4TB

1x Worker (large) 
● CPU: 64T

● RAM: 384GB

● SSD: 4TB

Switch

Total: CPU: 224T, RAM: 832GB, GPU: 17 (various)

Internet
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● User base:

■ 10 Researchers on daily basis (e.g. CMS experiment, Auger observatory)

■ Courses with up to 200 participants (e.g. Nuclear physics, ML in Physics)

■ Schools and workshop with up to 50 participants


● Front-end for data analysis in your web browser (link)

13 Resource: VISPA Cluster (2/2)

http://vispa.physik.rwth-aachen.de/


Live Demo
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15 A New Bottleneck (1/2)

● Data is streamed from central network storage to worker nodes

● Map jobs are very time efficient and fast using vectorised processing

● Central network storage has two limitations:


■ Read speed of HDDs 
■ Limited network bandwidth 

● Streaming of data becomes critical bottleneck!

Portal node 
● CPU: 64T

● RAM: 128GB

Storage 
● HDD: 120TB 
● SSD: 2TB

4x Worker (small) 
● CPU: 8T

● RAM: 64GB

● SSD: 1TB

2x Worker (med) 
● CPU: 64T

● RAM: 192GB

● SSD: 4TB

1x Worker (large) 
● CPU: 64T

● RAM: 384GB

● SSD: 4TB

Switch

Internet
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16 A New Bottleneck (2/2)

Network IO

CPU Wait

Effective CPU Usage

Jo
b 
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50% speed loss



Dennis Noll - 17.10.22

WLCG

17 Storage Layout

● Critical bottleneck is streaming of data to the processing elements

● Various storage types and locations available to solve the problem

● Two stage solution using central network storage and on-worker SSD

O(PB)

O(100MB/s)

Many users

High latency
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● Critical bottleneck is streaming of data to the processing elements

● Various storage types and locations available to solve the problem

● Two stage solution using central network storage and on-worker SSD

O(PB)

O(100MB/s)

Many users

High latency

Slide 18

Storage

O(100TB)

O(100MB/s)

Stores experiment 
data for our group

Worker

CPU

O(10GB)

O(100GB/s)

O(1TB)

O(500MB/s)

SSD

Slide 19-21

O(MB)

O(TB/s)

Needs only fraction of data which 
is processed by this worker
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18 Network Attached Storage

● Save experiment data on-site:

■ Easy and reliable access (no timeouts, credentials, ...)

■ Direct connection to worker nodes (low latency, 10GBit)


● Three storage tiers:

■ /home (2TB): User homes

■ /scratch (24TB): Mirrored experiment data

■ /store (96TB):

－ Un-mirrored experiment data

－ RAID0 striped across 6 x 16TB HDDs enables fast reading

...

Block 1 Block 2 Block 3

Block 4

Block 7 Block 8 Block 9

Block 5 Block 6

Disk 1 Disk 2 Disk 3
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19 On-Worker Storage (FS-Cache)

● Using on-worker SSDs to minimise network traffic

● Used software implementation: FS-Cache & cachefilesd


■ Transparent caching system, available in Linux kernel

■ Granularity: Cache on block level (4kB)

■ Strategy: Least recently used (LRU)

NFS

Server

NFS

Client CacheFiles /var/fscache

VFS

User

Application cachefilesd

Kernel

Space

Network

User

Space

FS-Cache
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● Using on-worker SSDs to minimise network traffic

● Used software implementation: FS-Cache & cachefilesd


■ Transparent caching system, available in Linux kernel

■ Granularity: Cache on block level (4kB)

■ Strategy: Least recently used (LRU)

NFS

Server

NFS

Client CacheFiles /var/fscache

VFS

User

Application cachefilesd

Kernel

Space

Network

User

Space

FS-Cache

Challenge: Cache trashing!

● Needed data gets evicted from cache

● Case 1: By somebody else


■ Everybody uses same files/chunks (where possible)

● Case 2: By yourself


■ Consistent assignment job ↔ worker via affine caching
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20 Assignment Job ↔ Worker

● Always process same data on same worker

● Use 64-dim embedding in hash space:


■ Embedding: embed("worker-01") = (180, 201, ...)

"worker-01"
sha512

10110100 11001001 ...

x1=180 x2=201

in
t

in
t
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Worker 1

Worker 2

Dask job

21 Assignment Job ↔ Worker

● Always process same data on same worker

● Use 64-dim embedding in hash space:


■ Embedding: embed("worker-01") = (180, 201, ...)

－ Worker: embed(worker_name + id)

－ Job/data: embed(filename + event range)


● Two tricks:

■ Worker have weight acc. to size

■ Place worker multiple times (id)


● D = Weighted euclidean distance

● Assignment via minimum D


● Results in:

■ Affine caching

■ Graceful on failures
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https://ceph.com/assets/pdfs/weil-crush-sc06.pdf
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21 Assignment Job ↔ Worker

● Always process same data on same worker

● Use 64-dim embedding in hash space:


■ Embedding: embed("worker-01") = (180, 201, ...)

－ Worker: embed(worker_name + id)

－ Job/data: embed(filename + event range)


● Two tricks:
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■ Place worker multiple times (id)
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Lo
gi

c 
si

m
ila

r t
o 

ce
ph

 (l
in

k)

min (D)

Worker 1

Worker 2

Dask job

Assignment

Hash distance

https://ceph.com/assets/pdfs/weil-crush-sc06.pdf
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22 Many Alternatives! (& why we don't use them)

● No POSIX access

● Not easy with many users

XCache Distributed File Systems

● Does not handle 
changing files so well

● No cache tiering

● Cache tiering removed ● No graceful failure of 
parts of storage

● Caching only based 
on modification time

● Seems promising but still very new

● Documentation not complete yet
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23 Benchmark: Definition and Results

● Read-only task run 10 times (cycles) with 220 workers

● Data:


■ Higgs pair production analysis (1440GB, 109 events, 120 columns)

■ Using read-optimised compression algorithm (Z-std, 10)


● Results:

■ Gradual performance: work stealing 
■ Runtime lower bound: CPU → IO Bottleneck solved

1 2 3 4 5 6 7 8 9 10
Cycle #

0

200

400

600

800

1000

1200

GB min

Read from NFS [GB]

Runtime [min]

0

25

50

75

100

125

150

£6.3 speedup

£2.4 speedup
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24 Impact on Analysis

● Particular speedup for read heavy pre-processors (e.g. PU counting)

● Enables different analysis run-modes for full analysis (e.g. 2016, 3TB):


■ Explorative (w/o correction & systematic shifts, only simulations): 20min 
■ Quick (w/o computation heavy systematic variations (JEC)): 6h 
■ Full publication-ready analysis run: 20h

Pre-
Process
Pre-

Process

Prepare

Process

PreparePrepare

Pre-
Process
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25 Summary

● Fast O(TB) Physics Analysis on Small Institute Cluster

● Columnar processing via NumPy, Awkward

● Job distribution via map & reduce (Dask)

● Solved IO bottleneck:


■ Optimized storage distribution

■ Affine caching concept


● Analysis runtimes:

■ Explorative: 20 min

■ Full: 20h

20min - 20h


