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2 Motivation

● Small time-to-insight drives high physics potential:

■ Tuning of existing methods

■ Investigations of new methods


● Ultimate goal: Analysis in duration of a coffee break

● Also: Crucial for HL LHC analyses

Data ~ O(TB) Results ~ O(kB)
Input Analysis Output

Faster = Better
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3 Physics Analysis & Team

● Analyses have common challenges:

■ Many inputs:

－ Simulations and recorded data

－ Meta data (Efficiency factors, Corrections, ...)


■ Heavy computations (Event reconstruction, MVA algorithms, ...)

■ Bookkeeping


● Shared software repository

Team (Standard CMS institute)
Higgs Pair Production Higgs Strahlung Various

<latexit sha1_base64="uxvSfHihs9ggK0NypL+ZDtF3yWI="></latexit>

<latexit sha1_base64="LgXQi/3yWW+ze0wDqJZ8dBGuyoU="></latexit>

New MVA methods,

Jet-Flavour tagging,


...

Prof.

https://git.rwth-aachen.de/3pia/cms_analyses/common
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4 Analysis Structure (1/2)

● Inputs: Event data, meta data

● O(100) different computing steps:


■ Preparation of meta data

■ Pre-processing of event data

■ Main-processing of event data


● Outputs: Histograms, plots, ...

● Tasks connected using law

Pre-
Process

Prepare

Process

PreparePrepare

Pre-
Process

● Full analysis

● Development (repeated)

● Debugging (repeated)

● Plotting features of data

Typical workflows

https://github.com/riga/law
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5 Analysis Structure (2/2)

● Make-like execution of whole analysis (law run FullAnalysis)

● Visual task graph representation using Luigi Scheduler


■ Used for overview of run status, structural improvements, debugging

excerpt from HH analysis

https://luigi.readthedocs.io/en/stable/central_scheduler.html
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6 Analysis Structure - Inputs

● Different kinds of inputs:

■ Event data O(10TB):

－ Recorded data & Simulation

－ NanoAOD format ~1kB per event


■ Meta data O(MB):

－ Efficiency measurements, scaling factors, ...

－ Twiki pages, JSON files, Custom ROOT files, ...

Pre-
Process

Prepare

Process

PreparePrepare

Pre-
Process
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Preparation tasks 
● Prepare information for main processor

● Download files, Change formats

● e.g. Trigger eff. (ROOT to coffea hist)
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6 Analysis Structure - Inputs

● Different kinds of inputs:

■ Event data O(10TB):

－ Recorded data & Simulation

－ NanoAOD format ~1kB per event


■ Meta data O(MB):

－ Efficiency measurements, scaling factors, ...

－ Twiki pages, JSON files, Custom ROOT files, ...

Pre-
Process

Prepare

Process

PreparePrepare

Pre-
Process

Preparation tasks 
● Prepare information for main processor

● Download files, Change formats

● e.g. Trigger eff. (ROOT to coffea hist)

Pre-processors 
● Pre-structuring data

● Read intensive and repetitive

● e.g. Count PileUp, ...
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7 Analysis Structure - Processor Map

● Processor maps perform real computing payload

● Fast:


■ Vectorised processing (awkward, numpy)

■ Central GPU server for MVA evaluation


● Parallel processing in two levels of hierarchy:

■ Datasets (ttbar, ST, DY, ...)

■ Chunks (100k events)

reduce

map

map

map

Process

chunk 1

chunk 2
chunk 3
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8 Analysis Structure - Processor Reduce

● Reduces objects returned by map steps:

■ Histograms, event counts, cutflow statistics, ...


● Histograms are special case:

■ Can be multidimensional and very large O(GB)

■ Implemented fast histogramming methods (here):

－ hist with h5py backend

－ e.g. Expand, merge, compression, ...

reduce

map

map

map

Process

chunk 1

chunk 2
chunk 3

https://git.rwth-aachen.de/3pia/cms_analyses/common/-/blob/master/utils/bh5.py


Dennis Noll - 17.10.22
9 Map Scale Out: HTCondor + Dask

● Maps can be parallelised over multiple worker nodes

● Using HPC cluster with one portal node and worker pool

● Two step process:


1. HTCondor opens jobs in worker pool (1 CPU Thread, 1.5 GB RAM)

2. Dask uses HTCondor slots 

Worker poolPortal

User Session



Dennis Noll - 17.10.22
9 Map Scale Out: HTCondor + Dask

● Maps can be parallelised over multiple worker nodes

● Using HPC cluster with one portal node and worker pool

● Two step process:


1. HTCondor opens jobs in worker pool (1 CPU Thread, 1.5 GB RAM)

2. Dask uses HTCondor slots 

Worker poolPortal

User Session HTCondor Job

HTCondor Job

HTCondor Job

HTCondor Job



Dennis Noll - 17.10.22
9 Map Scale Out: HTCondor + Dask

● Maps can be parallelised over multiple worker nodes

● Using HPC cluster with one portal node and worker pool

● Two step process:


1. HTCondor opens jobs in worker pool (1 CPU Thread, 1.5 GB RAM)

2. Dask uses HTCondor slots 

Worker poolPortal

User Session HTCondor Job

HTCondor Job

Dask Job

Dask Job

HTCondor Job

Dask Job

HTCondor Job

Dask Job



Dennis Noll - 17.10.22
10 Map Scale Out: Reducing

● Outputs of parallel map jobs (e.g. histograms) must be reduced

● Ten parallel reducers on portal node

● Each reducer has two reducing instances:


■ Normal reduce: map jobs finished regularly, reduce job pulls

■ Early reduce: map jobs need space, map job pushes

Worker poolPortal

User Session HTCondor Job

HTCondor Job

Dask Job

Dask Job

Reducer

Reducer

HTCondor Job

Dask Job

HTCondor Job

Dask Job
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11 Software Stack

● Everything implemented in python (analysis repository)

● Modular software framework:


■ Standard tools: NumPy, matplotlib, Dask, HTCondor, ...

■ HEP specific tools: AwkwardArray, uproot, mplhep, coffea, ...

Benjamin Fischer, 24th Sep. 2020
Software Stack8

Leverage python ecosystem:
● existing tools as basis: NumPy, matplotlib, Dask(, HTCondor)
● HEP specific modularized tools usable across Analyses (& Experiments)

○ AwkwardArray, uproot, mplhep, coffea (https://github.com/scikit-hep)
● minimizes code maintenance needs
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https://git.rwth-aachen.de/3pia/cms_analyses/common
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12 Resource: VISPA Cluster (1/2)

● All analyses run on local institute cluster

● Optimised for scientific data analysis and machine learning

● Hardware: see below

● Software:


■ System (Ubuntu OS) via ansible

■ Analysis via conda, shared over network

Portal node 
● CPU: 64T

● RAM: 128GB

Storage 
● HDD: 120TB

● SSD: 2TB

4x Worker (small) 
● CPU: 8T

● RAM: 64GB

● SSD: 1TB

2x Worker (med) 
● CPU: 64T

● RAM: 192GB

● SSD: 4TB

1x Worker (large) 
● CPU: 64T

● RAM: 384GB

● SSD: 4TB

Switch

Total: CPU: 224T, RAM: 832GB, GPU: 17 (various)

Internet
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● User base:

■ 10 Researchers on daily basis (e.g. CMS experiment, Auger observatory)

■ Courses with up to 200 participants (e.g. Nuclear physics, ML in Physics)

■ Schools and workshop with up to 50 participants


● Front-end for data analysis in your web browser (link)

13 Resource: VISPA Cluster (2/2)

http://vispa.physik.rwth-aachen.de/


Live Demo
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15 A New Bottleneck (1/2)

● Data is streamed from central network storage to worker nodes

● Map jobs are very time efficient and fast using vectorised processing

● Central network storage has two limitations:


■ Read speed of HDDs 
■ Limited network bandwidth 

● Streaming of data becomes critical bottleneck!

Portal node 
● CPU: 64T

● RAM: 128GB

Storage 
● HDD: 120TB 
● SSD: 2TB

4x Worker (small) 
● CPU: 8T

● RAM: 64GB

● SSD: 1TB

2x Worker (med) 
● CPU: 64T

● RAM: 192GB

● SSD: 4TB

1x Worker (large) 
● CPU: 64T

● RAM: 384GB

● SSD: 4TB

Switch

Internet



Dennis Noll - 17.10.22
16 A New Bottleneck (2/2)

Network IO

CPU Wait

Effective CPU Usage

Jo
b 
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50% speed loss
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WLCG

17 Storage Layout

● Critical bottleneck is streaming of data to the processing elements

● Various storage types and locations available to solve the problem

● Two stage solution using central network storage and on-worker SSD

O(PB)

O(100MB/s)

Many users

High latency
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O(PB)

O(100MB/s)
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High latency
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Storage

O(100TB)

O(100MB/s)

Stores experiment 
data for our group

Worker

CPU

O(10GB)

O(100GB/s)

O(1TB)

O(500MB/s)

SSD

Slide 19-21

O(MB)

O(TB/s)

Needs only fraction of data which 
is processed by this worker
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18 Network Attached Storage

● Save experiment data on-site:

■ Easy and reliable access (no timeouts, credentials, ...)

■ Direct connection to worker nodes (low latency, 10GBit)


● Three storage tiers:

■ /home (2TB): User homes

■ /scratch (24TB): Mirrored experiment data

■ /store (96TB):

－ Un-mirrored experiment data

－ RAID0 striped across 6 x 16TB HDDs enables fast reading

...

Block 1 Block 2 Block 3

Block 4

Block 7 Block 8 Block 9

Block 5 Block 6

Disk 1 Disk 2 Disk 3
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19 On-Worker Storage (FS-Cache)

● Using on-worker SSDs to minimise network traffic

● Used software implementation: FS-Cache & cachefilesd


■ Transparent caching system, available in Linux kernel

■ Granularity: Cache on block level (4kB)

■ Strategy: Least recently used (LRU)

NFS

Server

NFS

Client CacheFiles /var/fscache

VFS

User

Application cachefilesd

Kernel

Space

Network

User

Space

FS-Cache
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■ Transparent caching system, available in Linux kernel

■ Granularity: Cache on block level (4kB)

■ Strategy: Least recently used (LRU)

NFS

Server

NFS

Client CacheFiles /var/fscache

VFS

User

Application cachefilesd

Kernel

Space

Network

User

Space

FS-Cache

Challenge: Cache trashing!

● Needed data gets evicted from cache

● Case 1: By somebody else


■ Everybody uses same files/chunks (where possible)

● Case 2: By yourself


■ Consistent assignment job ↔ worker via affine caching
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20 Assignment Job ↔ Worker

● Always process same data on same worker

● Use 64-dim embedding in hash space:


■ Embedding: embed("worker-01") = (180, 201, ...)

"worker-01"
sha512

10110100 11001001 ...

x1=180 x2=201

in
t

in
t
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Worker 1

Worker 2

Dask job

21 Assignment Job ↔ Worker

● Always process same data on same worker

● Use 64-dim embedding in hash space:


■ Embedding: embed("worker-01") = (180, 201, ...)

－ Worker: embed(worker_name + id)

－ Job/data: embed(filename + event range)


● Two tricks:

■ Worker have weight acc. to size

■ Place worker multiple times (id)


● D = Weighted euclidean distance

● Assignment via minimum D


● Results in:

■ Affine caching

■ Graceful on failures
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https://ceph.com/assets/pdfs/weil-crush-sc06.pdf
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● Use 64-dim embedding in hash space:


■ Embedding: embed("worker-01") = (180, 201, ...)
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min (D)

Worker 1

Worker 2

Dask job

Assignment

Hash distance

https://ceph.com/assets/pdfs/weil-crush-sc06.pdf
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22 Many Alternatives! (& why we don't use them)

● No POSIX access

● Not easy with many users

XCache Distributed File Systems

● Does not handle 
changing files so well

● No cache tiering

● Cache tiering removed ● No graceful failure of 
parts of storage

● Caching only based 
on modification time

● Seems promising but still very new

● Documentation not complete yet
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23 Benchmark: Definition and Results

● Read-only task run 10 times (cycles) with 220 workers

● Data:


■ Higgs pair production analysis (1440GB, 109 events, 120 columns)

■ Using read-optimised compression algorithm (Z-std, 10)


● Results:

■ Gradual performance: work stealing 
■ Runtime lower bound: CPU → IO Bottleneck solved

1 2 3 4 5 6 7 8 9 10
Cycle #

0

200

400

600

800

1000

1200

GB min

Read from NFS [GB]

Runtime [min]

0

25

50

75

100

125

150

£6.3 speedup

£2.4 speedup
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24 Impact on Analysis

● Particular speedup for read heavy pre-processors (e.g. PU counting)

● Enables different analysis run-modes for full analysis (e.g. 2016, 3TB):


■ Explorative (w/o correction & systematic shifts, only simulations): 20min 
■ Quick (w/o computation heavy systematic variations (JEC)): 6h 
■ Full publication-ready analysis run: 20h

Pre-
Process
Pre-

Process

Prepare

Process

PreparePrepare

Pre-
Process
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25 Summary

● Fast O(TB) Physics Analysis on Small Institute Cluster

● Columnar processing via NumPy, Awkward

● Job distribution via map & reduce (Dask)

● Solved IO bottleneck:


■ Optimized storage distribution

■ Affine caching concept


● Analysis runtimes:

■ Explorative: 20 min

■ Full: 20h

20min - 20h


