
https://root.cern

ROOT
Data Analysis Framework

Profiling Multithreaded RDF:
NUMA Aware Parallelism

Ivan Kabadzhov

https://root.cern

Outline

1. Understanding the parallelism of Multithreaded RDF
a. Slots, Tasks, Threads, TBB

2. Dashboards of Multithreaded RDF
a. Per Slot, Per Thread, Task duration distribution

3. NUMA Architectures and TBB solutions
4. Using TBB API to pin tasks to NUMA domains + Results
5. Comparison with the TNUMAExecutor implementation

2

https://github.com/xvallspl/root-evolution/blob/TNUMAExecutor/0004-TNUMAExecutor.md

Multithreaded RDF

3

tbb::task_arena::initialize(32)

ROOT::EnableImplicit(32)

32 threads

*(df.Histo1D(...))

…

RLoopManager::RunTreeProcessorMT()

TTreeProcessorMT::Process() ROOT::TThreadExecutor::ForEach(file)

tbb::parallel_for() tbb::parallel_for() tbb::parallel_for()

tbb::parallel_for()

ForEach(entryRange) ForEach(entryRange) ForEach(entryRange)

Multithreaded RDF

● Each thread executes multiple of tasks (by default
proportional to number of threads) → granularity

● Create a slot for each thread - each task reads/writes
data allocated for a certain slot; different tasks of the
same thread can be done in different slots

● A thread might start in core X, run in core Y, end in core Z

4

Task Dashboards

Patch RLoopManager::RunTreeProcessorMT(). Answers:
1. are there long tails of execution?
2. are there gaps between tasks?

Some of the plots suffer interesting problems. But why?

5

https://github.com/root-project/root/commit/4acebfbbbace9a36dd3c18426b16aa47b469abfc

Task Dashboards

6

I am mapping
the threads to
indices,
depending on
the first time
they started a
task

Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz

Percentile of the total entry
range that must be
processed.

Task Dashboards

7

Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz

Task Dashboards

8

Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz

Task Dashboards

9

AMD EPYC 7302 16-Core Processor

These were the outliers.
I discarded runs where
there were such
prolonged tasks.

Task Dashboards

10

AMD EPYC 7302 16-Core Processor

Task Dashboards

11

AMD EPYC 7302 16-Core Processor

Granularity Task duration distribution

12

Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz

TBB Major Points

● By default oneTBB does not pin threads to cores.
● By default, oneTBB uses work-stealing and

auto-partitioning to balance the load across cores.
● Dynamic nature ⇒ good composability overall (source)

13

Memory

C C

Memory

C C

NUMA Node 1 NUMA Node 2

Thread 1 Thread 2 Thread 3 Thread 4

Thread 3 Thread 4

https://www.youtube.com/watch?v=2t79ckf1vZY&ab_channel=IntelSoftware

Potential NUMA Effects

● Main Thread allocating a lot of memory, then all threads need
to access this memory → isolation is of no help!

● Thread migrating between different NUMA domains within the
execution of the same task
○ If load distribution requires migrating a thread off of a

processor → the OS pick an arbitrary new processor with
sufficient capacity.

○ The newly selected processor should not have higher
access costs to the memory → If no free processor
matching that criteria, the OS migrates to a processor
where memory access is more expensive

14

TBB NUMA Support (I)

Since TBB 2020 Initial Release, Source: tbb::info::numa_nodes()

1. Need to identify the system topology (fails on some machines!)
2. Create a vector of task arenas for each NUMA domain, statically split the input space to each

domain ⇒ each domain can only work on its own partition

15

 std::vector<tbb::numa_node_id> numa_nodes = tbb::info::numa_nodes();

 std::vector<tbb::task_arena> arenas(numa_nodes.size());

 std::vector<tbb::task_group> task_groups(numa_nodes.size());

 for (int i = 0; i < numa_nodes.size(); i++) { arenas[i].initialize(tbb::task_arena::constraints(numa_nodes[i])); }

 for (int i = 0; i < numa_nodes.size(); i++) {

 arenas[i].execute([&] {

 task_groups[i].run([&] {

 auto lowerBound = start + i * (end - start + size) / size;

 auto upperBound = std::min(start + (i + 1) * (end - start + size) / size, end);

 tbb::parallel_for(lowerBound, upperBound, step, f); }); }); }

 for (int i = 0; i < numa_nodes.size(); i++) { arenas[i].execute([&task_groups, i] { task_groups[i].wait(); }); }

https://www.intel.com/content/www/us/en/developer/articles/release-notes/intel-threading-building-blocks-release-notes.html
https://spec.oneapi.io/versions/latest/elements/oneTBB/source/task_scheduler/task_arena/task_arena_cls.html?highlight=numa_node_id

TBB NUMA Support (II)
Already present in TBB 2017, Source: affinity_partitioner

It not only automatically chooses the grain size, but also optimizes for cache affinity and tries to
distribute the data uniformly among threads. Using affinity_partitioner can significantly improve
performance when:

1. The computation does a few operations per data access.
2. The data acted upon by the loop fits in cache.
3. The loop, or a similar loop, is re-executed over the same data.
4. The affinity_partitioner object lives between loop iterations. It remembers where iterations of the

loop ran, so that each iteration can be hinted to the same thread that executed it before.

16

 tbb::task_arena arena;

 arena.initialize(max_concurrency);

 arena.execute([&] {

 static tbb::affinity_partitioner ap; //this is the idea, but does not come out of the box, WIP!

 tbb::parallel_for(start, end, step, f, ap);

 });

https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Bandwidth_and_Cache_Affinity_os.html

Run Times

17

AMD EPYC 7302 16-Core ProcessorIntel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz

NUMA Task duration distributions

18

AMD EPYC 7302 16-Core Processor

TNUMAExecutor (old solution)

19

● Spawn a process for each NUMA domain
● Use numa.h to pin each process to a different NUMA

domain
● All threads spawned by a process will be restricted to the

same domain
● Execute in each thread (isolated per process)
● Collect results (first from threads, then from processes)
● Problems:

○ MP+MT unsafe?
○ hard to benchmark: numa.h overwrites the core mask specified by

taskset or numactl

