Profiling Multithreadec

NUMA Aware Parallel

lvan Kabadzhov

Data Analysis Framework

https://root.cern

|STT

https://root.cern

B W

Understanding the parallelism of Multithreaded RDF
a. Slots, Tasks, Threads, TBB

Dashboards of Multithreaded RDF

a. Per Slot, Per Thread, Task duration distribution
NUMA Architectures and TBB solutions

Using TBB API to pin tasks to NUMA domains + Results
Comparison with the TNUMAExecutor implementation

Outline

https://github.com/xvallspl/root-evolution/blob/TNUMAExecutor/0004-TNUMAExecutor.md

Multithreaded RDF

e T s ——

N /A

[tbb::parallel_for() [tbb::parallel_for()] tbb::parallel_for()
7 j f j ~
[ForEach(entryRange) [ForEach(entryRange)] ForEach(entryRange)]
32 threads \ — - ~

\

[tbb::parallel_for()]

I [TTreeProcessorMT::Process() H ROOT:: TThreadExecutor::ForEach(file)]
[tbb::task_arena::initialize(32)]

T \
[ROOT::EnabIeImpIicit(32)] [RLoopManager::RunTreeProcessorMT() }<—i *(df.Histo1D(...))]

3

Multithreaded RDF

e Each thread executes multiple of tasks (by default
proportional to number of threads) — granularity

e C(Create a slot for each thread - each task reads/writes
data allocated for a certain slot; different tasks of the
same thread can be done in different slots

e A thread might startin core X, runin coreY, end in core Z

Task Dashboards

Patch RLoopManager::RunTreeProcessorMT(). Answers:

1. are there long tails of execution?
2. are there gaps between tasks?

Some of the plots suffer interesting problems. But why?

https://github.com/root-project/root/commit/4acebfbbbace9a36dd3c18426b16aa47b469abfc

Task Dashboards

| am mapping
the threads to
indices,
depending on
the first time
they started a
task

Thread ID

Open Data Benchmarks 7 10x files (170GB)

[Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz]

16
0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.62% 0.63% 0.63%
14 4 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.62% 0.63% 0.63% 0.63%
0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.62% 0.62% 0.62% 0.63%
12 4 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.62% 0.63% 0.63% |
0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63%
Percentile of the total entry
10 4 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.62% 0.63% 0.62% range that must be
0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% processed.
84 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63%
0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.62%
6 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63%
0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63%
a4 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.62%
0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63%
> 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63%
0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63%
0- 0.63% 0.63%
0 20 0 60 80 100

Time Elapsed (s)

Thread ID

Task Dashboards

[Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz]

Open Data Benchmarks 7 10x files (170GB)

o] 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.24% 1.24% 1.25% 1.25%
6 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 124% 1.25% 1.25% 1.25%
5 1.25% 1.25% 1.25% 1.25% 1.25% 125% 1.25% - 1.24% 1.25% 1.25% 1.25%
4 1.25% - 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.24% 1.25% 1.24%
34 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25%
2 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.24% 1.25% 1.24%
14 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.24% 1.25% 1.25%
0+ 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.24%
(') 2‘0 4'0 6'0 8‘0 1(30 1&0 140

Time Elapsed (s)

Task Dashboards

[Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz]

Open Data Benchmarks 7 10x files (170GB)

1.4+

1.2 4

1.0 4 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00%

0.8

Thread ID

0.6

0.4 1

0.2 4

0.0 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00%

0 50 100 150 200 250 300 350
Time Elapsed (s)

Task Dashboards

[AMD EPYC 7302 16-Core Processor]

Open Data Benchmarks 7 10x files (170GB)

16
0.65% 0.64% 0.65% 0.64% 0.59% 0.63% 0.58% 0.60% 0.63% 0.64%
144 0.64% 0.64% 0.64% 0.64% 0.61% 0.62% 0.63% 0.63% 062% 0.63% 0.65%
0.62% 0.63% 0.62% 0.62% 0.62% 0.59% 059% 0.62% 062% 0.56% 058% 0.65%
12 4 0.62% 0.62% 0.63% 0.62% 0.62% 065% 0.65% 0.65% 0.64% 0.64% 0.64% 0.64%
0.63% 0.63% 0.63% 0.63% 0.62% 0.56% 0.60% 059% 0.65%
10 4 0.64% 0.64% 0.64% 0.64% 0.64% 0.58% 0.61% 0.63% 0.64%
0.61% 0.61% 0.56% 0.60% 0.65% 0.65% 0.62% 0.62% 0.62% 0.65% 0.64%
% a 0.65% 0.65% 0.64% 0.65% 0.62% 0.61% 0.63% 0.58% 0.57% | 0.64%
E 0.58% 0.62% 0.62% 0.62% 062% 0.62% 0.62% 0.62% 0.59%
6 0.65% 0.65% 0.65% 0.64% 0.65% 0.62% 0.62% 057% 0.59% 0.56% 0.64%
0.58% 0.62% 0.64% 0.65% 0.65% 0.65% 0.65% 0.65%
44 0.65% 0.65% 0.65% 0.65% 0.65% 0.65% 0.65% 0.65% 0.65% 0.60% 0.58% 0.61%
0.62% 0.63% 0.63% 0.62% 0.62% 058% 0.65% 0.65% 0.65% 0.65% 0.60%
0.57% 0.54% 0.63% 0.65% 0.65% 0.65% 0.65% 0.65%
These were the outliers. 0.64% 0.64% 0.64% 0.64% 0.64% 0.64% 0.64% 0.64% 0.62% 0.57% 0.63%
| discarded runs where 0.64% 0.65% 055% 0.62% 0.63% 0.64%
there were such
prolonged tasks. r/ 20 40 60 80 100 120 140
Time Elapsed (s)

Thread ID

Open Data Benchmarks 7 10x files (170GB)

Task Dashboards

[AMD EPYC 7302 16-Core Processor]

16
0.64% 0.64% 0.64% 0.64% 0.61% 0.55% 0.62% 0.62% 0.62% 0.56% 0.63%
14 1 0.65% 0.65% 0.65% 0.65% 0.63% 0.62% 0.57% 0.60% 0.65% 0.62% 0.64%
057% 0.54% 0.63% 0.65% 0.65% 0.65% 0.65% 0.65% 0.65% 0.65%
1 0.65% 0.65% 0.65% 0.65% 0.65% 0.65% 0.65% 0.62% 0.62% 0.62%
0.63% 0.63% 0.63% 0.63% 0.62% 0.61% 0.63% 0.58% 0.64% 0.59%
10 4 0.58% 0.62% 0.64% 0.65% 0.65% 0.65% 0.65% 0.62% 0.62% 0.62%
0.58% 0.61% 0.63% 0.65% 0.65% 0.65% 0.64% 0.63% 0.65%
8 0.58% 0.62% 0.62% 0.62% 0.62% 0.62% 0.62% 0.57% 0.65% 0.64%
0.65% 0.64% 0.65% 0.64% 0.59% 0.62% 0.64% 0.60% 0.64% 0.63%
64 0.62% 0.62% 0.57% 0.59% 0.56% 0.62% 0.62% 0.63% 0.58% 0.64%
0.64% 0.64% 0.64% 0.64% 0.64% 0.65% 0.65% 0.65% 0.58% 0.62%
4] 0.61% 0.61% 0.56% 0.60% 0.56% 0.62% 0.63% | 0.63% 0.62% 0.63%
0.62% 0.63% 0.63% 0.62% 0.62% 0.59% 0.59% 0.58% 0.60% 0.64%
2] 0.65% 0.65% 0.64% 0.65% 0.62% 0.58% 0.61% | 0.65% 0.65% 0.62%
0.64% 0.64% 0.64% 0.64% 0.64% 0.64% 0.64% 0.64% 0.59% 0.64%
0- 0.64% 0.65% 0.65% 0.65% 0.65% 1 0.63% 0.64% 0.64% 0.60%
0 10 20 30 40 50 60 70

Time Elapsed (s)

10

Task Dashboards

[AMD EPYC 7302 16-Core Processor]

Open Data Benchmarks 7 10x files (170GB)

3.5 A
3.0 4 2.54% 2.54% 2.48% 2.39% 2.54% 2.56% 2.43% 2.54% 2.55% 2.51%
2.5+
2.0 2.43% 2.44% 2.54% 2.54% 2.38% 2.48% 2.52% 2.36% 2.57% 2.55%
o
e}
©
8
£
1.5 1
1.0 2.54% 2.46% 2.44% 2.53% 2.53% 2.51% 12.30% 2.46% 2.57% | 2.56%
0.5 1
0.0 | 2.56% 2.57% . 2.56% 2.45% 2.53% 2.57% 2.57% 2.43% 2.55% 2.40%

0 25 50 75 100 125 150 175 200
Time Elapsed (s)

11

Granularity Task duration distribution

[Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz]

ODB 7 10x files. 2 cores. 5 executions. Histo of 20 bins.

[20 tasks per execution
— 20 tasks per execution
---- Mean: 20 tasks per execution
[40 tasks per execution
40 tasks per execution
Mean: 40 tasks per execution
[80 tasks per execution
- 80 tasks per execution
---- Mean: 80 tasks per execution

0.8 1

0.6

0.4 o \\ , ! i _JL

\J
AN

Percentile of tasks of this duration

Eoaccg: e B e —

0.2 4

0.0 T T T T T T T T
34.5 35.0 355 36.0 36.5 37.0 37.5 38.0

Task Duration

12

TBB Major Points

e By default oneTBB does not pin threads to cores.

e By default, oneTBB uses work-stealing and
auto-partitioning to balance the load across cores.

e Dynamic nature = good composability overall (source)

Thread 1

NUMA Node 1 NUMA Node 2

| Memory | | Memory |

td
Thread 3

Thread 1 Thread 2 Thread 3 Thread 4 13

https://www.youtube.com/watch?v=2t79ckf1vZY&ab_channel=IntelSoftware

Potential NUMA Effects

e Main Thread allocating a lot of memory, then all threads need
to access this memory — isolation is of no help!

e Thread migrating between different NUMA domains within the
execution of the same task

o If load distribution requires migrating a thread off of a
processor — the OS pick an arbitrary new processor with
sufficient capacity.

o The newly selected processor should not have higher
access costs to the memory — If no free processor
matching that criteria, the OS migrates to a processor
where memory access is more expensive

14

TBB NUMA Support (1)

Since TBB 2020 Initial Release, Source: tbb::info::numa_nodes()

1. Need to identify the system topology (fails on some machines!)
Create a vector of task arenas for each NUMA domain, statically split the input space to each

domain = each domain can only work on its own partition

std::vector<tbb::numa node id> numa nodes = tbb::info::numa nodes();
std::vector<tbb::task arena> arenas(numa_nodes.size());
std::vector<tbb::task group> task groups (numa nodes.size()):;
for (int i = 0; i < numa nodes.size(); i++) { arenas[i].initialize(tbb::task arena::constraints(numa nodes[i])); }
for (int i = 0; i < numa nodes.size(); i++) {
arenas[i] .execute ([&] {
task groups[i].run([&] {
auto lowerBound = start + i1 * (end - start + size) / size;
auto upperBound = std::min(start + (i + 1) * (end - start + size) / size, end);
tbb::parallel for (lowerBound, upperBound, step, f); }); }); }

for (int i = 0; 1 < numa nodes.size(); i++) { arenas[i].execute([&task groups, i] { task groups[i].wait(); }); }

15

https://www.intel.com/content/www/us/en/developer/articles/release-notes/intel-threading-building-blocks-release-notes.html
https://spec.oneapi.io/versions/latest/elements/oneTBB/source/task_scheduler/task_arena/task_arena_cls.html?highlight=numa_node_id

TBB NUMA Support (I1)

Already present in TBB 2017, Source: affinity_partitioner

It not only automatically chooses the grain size, but also optimizes for cache affinity and tries to

distribute the data uniformly among threads. Using affinity_partitioner can significantly improve
performance when:

The computation does a few operations per data access.

The data acted upon by the loop fits in cache.

The loop, or a similar loop, is re-executed over the same data.

The affinity_partitioner object lives between loop iterations. It remembers where iterations of the
loop ran, so that each iteration can be hinted to the same thread that executed it before.

HwnN =

tbb::task arena arena;

arena.initialize (max concurrency);

arena.execute ([&] {
static tbb::affinity partitioner ap; //this is the idea, but does not come out of the box, WIP!
tbb::parallel for(start, end, step, flj ap):

1)

16

https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Bandwidth_and_Cache_Affinity_os.html

Run Times

[AMD EPYC 7302 16-Core Processor]

[Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz |

ODB 7 with 534461980 entries (170GB)

ODB 7 with 53446198 entries (170GB)

500 - —$— 1 numa domain
- 1numa doma!n ~&— 2 numa domains
$— 2 numa domains 350 A | | | —$— 2 numa domains (+pinning)
400 4
300 A
o (V]
£ £ 250
S 300 A =
(=2} c
= £
g § 200 4
b
200 A 150
100 A
100 A
50 = .
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
cores # cores

17

NUMA Task duration distributions

[AMD EPYC 7302 16-Core Processor]

ODB 7 10x files: 8 cores. 5 executions. Histo of 20 bins.

1 NUMA domain
1 NUMA domain
1 NUMA domain
2 NUMA domains
2 NUMA domains
2 NUMA domains
2 NUMA domains (+pinning)]
2 NUMA domains (+pinning)
---- 2 NUMA domains (+pinning)

010

| 0

Percentile of tasks of this duration

— L | L | N~
0 1 . ! sl T’ ‘ ! ! \\
6.0 6.2 6.4 6.6 6.8 7.0

Task Duration

18

TNUMAExecutor (old solution)

e Spawn a process for each NUMA domain

e Use numa.h to pin each process to a different NUMA
domain

e All threads spawned by a process will be restricted to the
same domain

e Execute in each thread (isolated per process)

Collect results (first from threads, then from processes)

e Problems:
o MP+MT unsafe?
o hard to benchmark: numa.h overwrites the core mask specified by
taskset or numactl

19

