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W-mass measurements at the Tevatron and LHC
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We are trying to measure a parameter of the SM with
precision ~ 0.1 per mille at a hadron collider.

Extraordinary precision demanded from theoretical
predictions:
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Mixed QCD-EW corrections

[Bonciani, Buccioni, Mondini, Vicini (‘17); De Florian, Der, Fabre (‘18); Delto, Jaquier, Melnikov, R.R.
(‘19); Bonciani, Buccioni, Rana, Triscari, Vicini (‘19); Buccioni et al. (‘20); Cieri, De Florian, Der,
Mazzitelli (‘20); Bonciani, Buccioni, Rana, Vicini (‘20); Behring et al. (‘20); Buonocore, Grazzini,
Kallweit, Savoini, Tramontano (‘21); Bonciani et al. (‘21); Armadillo et al. (‘22); Buccioni et al. (‘22)]

* For W-mass determination, offshell effects are secondary — focus on
onshell vector boson production pp — V — /¢
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« Consider onshell vector boson production and decay pp — V — 7

* In resonance region, QCD-EW corrections to production and decay processes
can be treated separately.

[Dittmaier, Huss, Schwinn (‘14, ‘15)]

QCD (production) x EW (decay) QCD x EW (production)

I : q 7 Non-factorizable
resonant contributions
(not shown) suppressed
q / q ¢ by I'v/my

[Dittmaier, Huss, Schwinn (‘14, ‘15)]
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« Consider onshell vector boson production and decay pp — V — 7

* In resonance region, QCD-EW corrections to production and decay processes
can be treated separately.

[Dittmaier, Huss, Schwinn (‘14, ‘15)]

QCD (production) x EW (decay) QCD x EW (production)

! 7 Non-factorizable

q /
resonant contributions
[ mw ~ —14 MeV J (not shown) suppressed
- ~ 7/ q 0 by I'yv /my

[Dittmaier, Huss, Schwinn (‘14, ‘15)]
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« Consider onshell vector boson production and decay pp — V — 7

* In resonance region, QCD-EW corrections to production and decay jprocesses
can be treated separately.

[Dittmaier, Huss, Schwinn (‘14, ‘15)]

QCD (production) x EW (decay) QCD x EW (production)

on-factorizable
asonant contributions
(not shown) suppressed

by T'y/my

=]
)
f

[Dittmaier, Huss, Schwinn (‘14, ‘15)]
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 Two major challenges in computing higher order corrections:
1. Loop amplitudes
2. Handling infrared singularities

* Loop amplitudes:
- Two-loop form factors - One-loop real-virtual amplitudes

- Known for Z production. [Kotikov, Kiihn, Veretin (‘08)] - Standard one-loop

programs, e€.g. OpenLoops

> Computed for first time for W production. e -
[Cascioli, Maierhofer, Pozzorini (‘12);

[Behring et al. (‘20)] Buccioni, Pozzorini, Zoller (*18); Buccioni
etal. (‘19)]
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 Two major challenges in computing higher order corrections:
1. Loop amplitudes
2. Handling infrared singularities

* Infrared singularities with different origins appear simultaneously:
> Virtual photons;
> Virtual partons;
> Unresolved real photons;
» Unresolved real partons.

* Insight from NNLO QCD: treatment of IR singularities with non-trivial structure.
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[Caola, Melnikov, R.R. (‘17)]
[Caola, Melnikov, R.R. (‘19); Asteriadis, Caola, Melnikov, R.R. (‘19)]

[Delto, Frellesvig, Caola, Melnikov (‘18); Delto, Melnikov (‘19)]

 Extension of FKS subtraction to NNLO.

» Exploits color coherence of onshell, gauge-invariant amplitudes
> Used in resummation & parton showers; not manifest in subtractions.

. cannot resolve details of
m collinear splittings; only sensitive to total

%% color charge.
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 No overlap between soft and collinear limits - treated independently:

> Energies and angles decouple.

> Regularize soft singularities first, then collinear singularities -
iterative subtraction of divergences.

> Overlapping soft singularities separated by energy ordering.

» Overlapping collinear singularities separated using partitioning and
sectoring of phase space. [Czakon (‘10, ‘11)]

« Natural splitting by rapidity.

« Straightforward adaptation for mixed QCD-EW singularities.



- ke QCD-EW corrections to onshell vector boson production @

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Consider onshell vector boson production pp — V — 173

« Z production: subtractions proceed as “abelianized NNLO QCD".
« W production: qualitatively new feature - photon radiated off W.

* Collinear limits regulated by W-mass, but soft limit is singular.

« Changes form of eikonal function in soft limit:

2C .
Soft gluon = Eiky(p1.p2ips) = 7 ';(1;(1]921902; )
9 g
2 . 2
vy Y ~y

20pw -p1) 2pw - p2)
o (Qu (pw - py)(P1 - P4) @ (pw - py) (P2 'pﬂ)

mm) More complicated function, but method is conceptually unchanged!



2% | UNIVERSITA

B QCD-EW corrections to onshell vector boson production

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Can make subtraction scheme simpler:

« NNLO QCD: soft limits of gluons overlap = introduced energy ordering.

* Mixed QCD-EW: soft limits of gluons and photons are independent - no energy ordering
needed.

e Soft subtraction: iterated NLO-like soft limits.

* Genuine NNLO-like singularities in collinear limits = require phase-space partitioning and
sectoring.

* Fewer collinear limits, e.qg. % disappears.
ah
4

- Fewer sectors required.
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Can make subtraction scheme simpler:

* NNL
?/ Implemented this subtraction method to compute mixed QCD- \

* Mixe EW corrections to production of onshell Z and W bosons.
neeg
[Delto, Jaquier, Melnikov, RR (‘19);
* Soft Buccioni, Caola, Delto, Jaquier, Melnikov, RR, (‘20)
Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, RR (‘20)]
* Genl . : * 4o
sectl Further extended method for dilepton production pp — Z/~v* — (¢
. Fewe [Buccioni, Caola, Chawdhry, Devoto, Heller, von Manteuffel, Melnikov, RR, Signorile-Signorile (‘22)]

« How could these corrections impact the
- Fe measurement of the W-mass?

N /
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DECLLSTUDI W-mass measurements @

« Aiming at 0.1 per mille precision, but theoretical precision limited to ~ 1%.

* Sources of theoretical uncertainty:
— higher order corrections

- subleading logs

- pdfs :

5
- Non-perturbative effects ' K- Factor W

. LHC 13TeV
- Quark masses iy asiis
_ 20 40 60 80 100 120 140 160 180 200
Q[GeV]
pp — Z — £¢ to tune generators and
verify results.
Precision Calculations for DY Processes Raoul Réntsch (U. of Milan and INFN) 5
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Implicit assumption: higher-order corrections to W and Z production strongly
correlated.

Reasonable for QCD corrections:

> Minor differences: pdfs, masses, helicity structures, ...

EW corrections: qualitatively different - W charged, can radiate:

 Mixed QCD-EW corrections potentially decorrelated.

» Possible impact on W-mass measurements at
/ desired precision.
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« Estimate effect of QCD-EW corrections on W mass measurement, due to decorrelations
between Z and W production.

« Correlation between average transverse momentum of leptons and mass of boson:

W W,meas.
mw _ P70, meas Z<pT,z ) o
mz  (p7) (P

 Theoretical correction: assume input masses, compute W-mass, and compare with input

W-mass. Z.th.
myy (P70 )
= Cth' = in I/Vz,th.
myz <pT,l )

— estimate impact of decorrelations in W and Z spectra from higher order corrections:

Z.th. W, th.
omy ™ 0Cw, 0pry)  dpry )
meas. - Zth. W.th.
my Cth, <pT,l ) <pT,l ) [Behring et al. (‘21)].




DEGLI STUDI

Coy | e Impact on W mass determination <

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

« NLO EW: Ampy =1 MeV /ﬁ: 13 TeV \
Shifts in W-mass, inclusive: - o
° QCD'EW AmW — —7 Mev yscheme
myz = 91.1876 GeV
> Impact of QCD-EW corrections larger than NLO EW: mw = 80.398 GeV

) . my = 173.2 GeV
> NLO EW corrections suppressed in G,scheme.
myg = 125 GeV

> NLO EW corrections more correlated between W and Z production. G — 116339 - 10~ Gev—2

Z,th. W,th.
5mrvr‘1/eas. B 5Cn. B 5<pT:; > B 5<pT,lt > NNPDF31 luxQED
mrvr‘lfeas. Cth. <p§,;:h> <ijE/,lth> \\MR = pup =my /2 /

NLO EW: Ampy = —31 MeV + 32 MeV
QCD-EW: Amy = +54 MeV — 61 MeV
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Shifts in W-mass: fiducial setup

* Inclusive setup: Amyy = —7 MeV

« “ATLAS" cuts: Ampy = —17 MeV
« “Tuned” cuts: Ampy = —1 MeV

> Cuts can have dramatic impact: shifts vary by factor of ~20.

> “ATLAS” cuts have stronger cuts on leptons from (lighter) W than from Z »
decorrelation.

> QCD-EW shifts potentially relevant for target precision of 8 MeV.

p7e > 25 GeV; |nf| < 2.4
“ATLAS” cuts: pqvifg > 30 GeV; p\{}fmiss > 30 GeV; V] < 2.4.

“Tuned” cuts: Dy g > 25.44 GeV;py i > 25.44 GeV; || < 2.4, such that Cy, = 1at LO.
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These results are estimates of impact of QCD-EW corrections on W-mass measurements at the
LHC.

Indicate that QCD-EW corrections could be relevant for 0.1 permille precision on W-mass
measurements.

* Further investigations are essential:
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 These results are estimates of impact of QCD-EW corrections on W-mass measurements at the
LHC.

* Indicate that QCD-EW corrections could be relevant for 0.1 permille precision on W-mass
measurements.

* Further investigations are essential:

- What is the impact when using the full transverse

[QcD-QCDY10 —--—

momentum spectrum? o1 r -aCOY10 — -~
QCD-weak - - -
« Cannot be evaluated using purely fixed-order _oosf R o el
results due to Sudakov shoulder. § ot I
E Q Pre e, [} bomemmsmamamems s -_.: -__: -_-__ i
« Need to include multiple photon radiation. .
-0.05 | I odduction onfy
~ Match photon shower to QCDXEW? L e
30 40 50 60 70 80 90 100

P, [GeV]

« Can we gain further insight from using higher moments

of lepton distribution?
[Buccioni, Caola, Delto, Jaquier, Melnikov, R.R. (2020)]
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 These results are estimates of impact of QCD-EW corrections on W-mass measurements at the
LHC.

* Indicate that QCD-EW corrections could be relevant for 0.1 permille precision on W-mass
measurements.

* Further investigations are essential:

Generator-level Signal Simulation

> How well are these captured with standard
experimental simulation tools?

~ (Some) Effects of simultaneous QCD and EW
radiation included in experimental analyses O e
through e.g. RESBOS+PHOTOS.

PHOTOS

RESBOS

- Calculates triple-differential production cross section, and p-dependent
double-differential decay angular distribution

X I nc I u d e mu |t| p | eem | SS | ons b utm | SS V| rtua | - calculates boson py spectrum reliably over the relevant py range: includes
. . tunable parameters in the non-perturbative regime at low p.
contributions.

* Multiple radiative photons generated according to PHOTOS
(P. Golonka and Z. Was, Eur. J. Phys. C 45, 97 (2006) and references therein)

« Missing effects accounted for in uncertainties? .
[A. V. Kotwal, CERN EP Seminar 21/4/2022]
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These results are estimates of impact of QCD-EW corrections on W-mass measurements at the
LHC.

Indicate that QCD-EW corrections could be relevant for 0.1 permille precision on W-mass
measurements.

* Further investigations are essential:

> What is the impact on other observables?
>

[ Dialogue between theorists and experimentalists is crucial! ]
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Calculation of mixed QCD-EW corrections to onshell vector boson production
using nested soft-collinear subtraction scheme.

(Analogous calculation exists for dilepton production).

Estimated impact on measurement of W-mass at LHC ~ 10 MeV.

> Looked at decorrelation in ratios of average lepton transverse momentum.
» Strongly cut-dependent.

> Potentially relevant for target uncertainty of 0.1 per mille.

> More refined analysis is required, and discussions are encouraged!



£557% | UNIVERSITA
g 7F J | DEGLISTUDI INFN
© 9 | DIMILANO

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

THANK YOU FOR YOUR ATTENTION
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S QCD-EW corrections to Z boson production
01 F [QCD-QCD)10 —-— 01k [QCD-QCDJ10 — - — ]
QCD-QED —-—- QCD-QED —-—-
QCD-weak - - - QCD-weak = = =
0.5 JE s S 005 | o
& &
kS 2
g 0 l...-...-....-..: .;..-...-....-..:.._... ................................ - % SRR -n|_|n_"|f_.“||.'l'|'|'\-’l'|'|'|m|’|I'l'||'|1'l'|||1'l|'\H'ln’lﬁ
_____ - e L -
) E—— ; i ¥ il
0.05 0.05 ! Production only
70 80 90 100 30 40 50 60 70 80 90 100
Py, [GeV] Py, [GeV]
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QCD-EW corrections to W boson production

Istitto Nazional di Fisca Nucleare

|

pb

GeV

|

do
d:r'J.I.,c

|

1
GeV

|

dA

t’1p| e

NLO EW = ---
" NNLO QCD-EW ——

3wl

do
dm e

eV

|

GeV

|

dA

dmy e

500

—0.0005

—0.001

NLO QCD ——

NLOEW ===
NNLO QCD-EW  ——

60 65
my e, [GeV]

70
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Higher order corrections contain IR singularities from soft and/or collinear radiation.

Real corrections  Virtual corrections
> Integrate over phase space of > Explicit IR singularities from loop
radiated parton: integration

(G0000000"
. C_ C_
%/ |IM|*F;de, diverges }’\/\/\N P My_jg0p = _22 + =4
—t VAVAVAYAY ¢ €

» Singularities unphysical, guaranteed to cancel in sum (KLN theorem).
« Cancellation only manifest after integrating over full phase space of emitted parton:
- |lose kinematic information.
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Consider double-real emissions in vector boson production: qq —V 4+ g+ ¢

Singularities arise when:

Y

« Either gluon or both gluons— soft.

« Either gluon or both gluons— collinear to either initial state
quark.

* Gluons — collinear to each other.

 Any combination of above - overlapping singularities.

- Can approach each limit in different ways.

* Need to separate the singularities.

« Multiple approaches: qT, N-jettiness, antennas, STRIPPER, CoLoRFUlNNLO, Projection-to-Born,
nested soft-collinear subtraction, geometric subtraction, local analytic subtraction,
unsubraction, Loop-Tree Duality, ...
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« Consider partonic process q(p1)G(p2) — V(p3)g(p4)g(ps)

! 31 * Define
A 4 5 .
; . Fra(1,2,4,5) = dLipsy |[M(1,2,4,5,V)|? Fiin(1,2,4,5,V)
d“tp;
— 2. o™ — 1/2 / Agalldgs) Foas (1,2,4,5) [0 = Gt = B

* Overlapping double-soft and single-soft singularities:
Ey, B — 0; Ey,—0; FEs—0.
 Order energies:E, > E5 ~ softsingularities: either double soft or g; soft.
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m 25 dot = 1/2!/[dg4][dg5]FLM(1,2,4, 5)

= /[dg4] [dg5](9(E4 — E5)FLM(1, 2,4, 5) = <FLM(]-7 2,4, 5)>
« Regulate the soft singularities:

(Frm(1,2,4,5)) = ($Fra(1,2,4,5)) + (I — $)Fra(1,2,4,5))

= ($Fr(1,2,4, 5)> + <S5(] — $)Frar(1,2,4, 5)> Double- and single-soft counterterms

(I = 85)(I = $)Frar(1,2,4,5)). Soft-subtracted term - still has

(overlapping) collinear

& . Extracts double-soft limit singularities

S5 : Extracts E; - 0 limit



L | st Phase-space partitioning

" | DI MILANO

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Separate overlapping collinear limits in two stages:

1. Introduce phase-space partitions 1 = w1 + w2429 + w2 + w24,

Crow'1® = Chpuw'1® =0 = w'® contains Cy1, Cs1, Cus

4
Triple collinear 5%%:% «m&%
. N Y - ) . h ()
A 4 /

partition

and

Crow'®2 = Cow'®25 = Cusw®?5 = 0 w425 contains Cyy, Cso

4 5

Double collinear partition %% o f Q

1




A757% | UNIVERSITA
€ 7’9 | DEGLISTUDI
2[Y | DIMILANO

Sector Decomposition

2. Sector decomposition to remove remaining overlapping singularities
in triple collinear partitions.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

sina

aritie
41
T51 <%77

751

Define angular ordering to separate

u
1=10

4
% < M51 < M41

51

) +o(

151 Nij = (1 — COS 19@]>/2

)

)

Na1 < —— — < n41 < 151

w0 (<) +0 (5

= g(a) L g 4 gle) 4 g(d)

Thus the limits are
Q(G) . 051 H(b) . 045
0 .y 09D Oy

N41

* Achieved using angular phase-space parametrization [Czakon (‘10, ‘11)].
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Separates collinear limits - subtract iteratively from soft-regulated term
(I —S85)(I—8)Frm(1,2,4,5)) =
(Fing (1,2,4,5)) + (Fing(1,2,4,5)) + (Fiqg7(1,2,4,5))

(Soft-regulated) single and triple collinear Fully subtracted term - finite
counterterms.

Integrate four singular counterterms

($Fpa(1,2,4,5)) (S5(I — 8)Frar(1,2,4,5))  (Fing(1,2,4,5)) (Fraf(1,2,4,5))

over unresolved phase space :
- cancel IR poles against loop amplitudes;

> Finite remainder: subtraction counterterm.
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q(p1)q(p2) = e~ (p3)e™ (pa)g(ps)v(ps)

* Partitioning:

1 = 516 | 25,26 | /15,26 | (16,25 | 1536 | 1546 | , 2536 | , 1546

« Triple collinear sectors * Double collinear sectors
s 5] " l
| oo, ; gy, ’\‘\I\NN g,
1 = A

« Additional partitions have only double collinear limits
» ~ NLO x NLO - simple!
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QCD-EW corrections to dilepton production <R

First mixed QCD-EW corrections to dilepton production presented by [Bonciani, Buonocore,
Grazzini, Kallweit, Rana, Tramontano, Vicini (‘21)].

Two-loop amplitudes evaluated with help of semi-analytic method.cf. Armadillo et al. (‘22)]

IR singularities regulated by gT subtractions as implemented in MATRIX.

dofdpr e [phy GeV]
HRERIE RS

-t [
3 1]
J 1072 |,
| “her

|1 ERTnS
| E

-3 10t}

2 L £
1F L L L L 41077 1

120 F 7 0
]

a0k,
! i -af
“\...._ ......... T 6 [~
s —80 |

dofdoiin (% dajdavo (%)

+60 | E
+40 | ET

[V S — ,____,:" : =15 F

S S

1 f 1 i i
30 35 40 45 50 55 60
pr+ [GeV]

L 1 1 1
100 200 300 400 a00
P+ [GeV]

o smmEEmEESEEEIC -4 ‘/
e SRR

[Grazzini, Kallweit, Wiesemann (‘17)]

Results for massive leptons (collinear singularities regulated
by mass):

- Fiducial cross section increased by 0.5% relative to LO.
- Larger impact at high-pT: -60% correction
- High invariant mass: correction ~ -1.5%.

- Factorized approximation works well at Jacobian peak,
fails at higher pT.
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LO Corrections ~ O(ata?)

O’[ﬂ)} U(('},{'J) 50'(1’0) 50({'},1) 60.(‘2,(]) 60(1,1)
qq 1561.42 | 340.31 | —49.907 44.60 | —16.80
VY 59.645 3.166

qq 0.060 —32.66 1.03
qy —0.305 —0.207
97 0.2668
99 1.934

sum | 1621.06 | 340.37 | —47.046 13.88 | —15.71

LHC 13.6 TeV
NNPDF31_nnlo_as_0118_luxged
G, input scheme for EW parameters.

Massless leptons, clustered with
photons if AR, < 0.1 (“lepton jets”)

HR = pp = [ = myp/2
mye > 200 GeV
Pr e+ > 30 GeV

”ygi ‘ < 2.5

PT,0+PT 0~ > 35 GeV
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Fiducial cross section to NNLO QCD + NLO EW:

00 4 5610 4 550 5520 = 1928.371 5% fh

Theoretical uncertainty:
» Vary scale 4 by factor of 2 in either direction.

> Change input scheme for EW parameters to a(myz)-scheme.
> Take envelope of these results.
Mixed QCD-EW corrections (~ -1%) comparable to theoretical uncertainty.

Including mixed QCD-EW corrections decreases theoretical uncertainty
(mainly through decreasing dependence on EW input scheme)

(00 4 5510 4 5501 4 5520 4 5501 = 1912.6“:8;25% fb

(*) Uncertainties from pdfs not included
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Phenomenological Results: Cross sections in mass windows

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

« At high energies, EW corrections dominated by universal Sudakov logarithms.

Look at fiducial cross section in 4 mass windows:

o) ;200 GeV < myp < 300 GeV,

3 : 300 GeV < my < 500 GeV,

®®) . 500 GeV < my < 1.5 TeV,

dW : 1.5 TeV < myy < 0.
o [fb] g(0.0) | 55(1,0) oo (01) | 55(2.0) | 55(1,1) 5051{3? TQCDXEW
oM 11169.8 | 254.3 | —30.98 | 10.18 | —10.74 | —6.734 | 1392.670;°"
® 1368.29 | 71.91 | —11.891 | 2.85 | —4.05 | —2.321 | 427.170:1%
o) 82.08 | 14.31 | —4.094 | 0.691 | —1.01 | —0.7137 | 91.987022%

oW x 10 | 9.107 | 1.577 | —1.124 | 0.146 | —0.206 | —0.1946 | 9.50010%

—0.97%
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Phenomenological results: Distributions

Istitto Nazional di Fisca Nucleare

do /dmge [fb/GeV]
5!\.

0.95

(i.f)
ach

R
2
B

0.85

0.8

0.98
0.96

QCD+EW

(L1}

% 0.94
0.92

0.9

Invariant mass of the dilepton system

LA LANL I IO L I I IR AR R BRI |

— dogepsxEw

/

{01 (L1}
RQ(_D RQ(_D

(11)
RQ&D EW

200 300 400 500 600 700 800 goo 1000
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10

10 *
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10 3
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2 2 9
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£ T @

(1,1}

o
g=]
[}

0.9

Invariant mass of the dilepton system
T T T T | T T T T | T T T T | T T T

degepxew

= ||\‘||||||||||||||\‘|||

H
p
(5]
I
n
Sl

mye [TeV]

0—(070) _|_ 50—(170) _|_ 50—(0’1)

01 _
Roep =

O'(O’O) -+ 50‘(170)

B 000 4 5610 4 5501 4 55(1:1)

g(0.0) 4 §o(1,0)

1,1 0,1
- (QCI))/REQCI))

o0 4 5510 4 5501 4 5511

(0,0) 4 §5(1,0) 4 §5(0,1)
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Transverse momentum of the positron

% AR R R RN AR R

g 102 dogepx<Ew _;

Similar pattern for pr ¢+ : S o .
« NLO EW and QCD-EW corrections become
more important at high transverse mass. e

) . 0.95 w

* QCD-EW corrections have slightly SN E
stronger dependence on transverse M N E

0B85 - po1) ____ pL1) .

momentum compared to NLO EW e e
corrections. AN

* Reach ~ -3% at py s+ ~ 500 GeV o3 E
< o0 | E

0.92 f_ RSE:IEJ—EW —f

0.9 :\ 111 | 111 | 111 | 1111 | 1111 | 1111 | 111 | 111 I_

100 150 200 250 300 350 400 450 500

pre+ [GeV]
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Phenomenological results: Distributions
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NLO EW
corrections to
angular and
rapidity
distributions
show minor
shape changes.

Mixed QCD-EW
corrections very
flat.

¢ [fb]

do/dy;

(),94:||||| v b by b b b b b b g

(1,1)
Rocnew
B o
[+]

Rapidity of the dilepton system
T

po2 T[T T T T [T T [T T T T T [T T [T T [T T T T

— dogep<Ew

0.97_IIIII per v b et b el e bbbl
2.5 -2

do/dcos8” [pb]

Y

._M._; o

(1,1}
RO(_'U FEW

0.99 £

98 E

97 E

0.96 E

095 £

oggE 11 1
T

o

oo E
0.8 £ i

0.97 E N L0 0
-1 -

Cosine of the Collins-Soper angle 8
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