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Overview

I Modified gravity theories alter the hydrostatic equilibrium condition
in the weak-field limit.

I Hydrostatic equilibrium condition is a crucial ingredient for deriving
analytical formulas of stellar observables.

⇓
I One can constrain such theories from astrophysical observations.

I In reality stellar and substellar objects are anisotropic: e.g., rotation
and magnetic fields.

↓
I Such anisotropies also modify the hydrostatic equilibrium condition.

⇓
I Modified gravity + Anisotropy → stellar and substellar objects.
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Modified gravity theories: Classification
I Scalar-tensor theories (STTs): One of the most popular avatars of

modified gravity theories

I The scalar field is non-minimally coupled to gravity.

           DHOST
   * L : 2nd Order derivative

   * EOM : Higher Order 

  Horndeski

* L : 2nd Order     
      derivative

* EOM : 2nd Order 

Traditional
Scalar-Tensor

* L : 1st Order derivative

* EOM : 2nd Order 

I DHOST: L = f (φ,X )R +
∑5

i=1 Ai (φ,X )Li

where X ∼ −∇µφ∇µφ, Li : quadratic in 2nd order derivatives of φ.
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Vainshtein Screening mechanism

   GR recovered

Figure: Partial breaking of Vainshtein mechanism in DHOST theories.
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Modification in pressure balance equation
I In a particular subclass of DHOST theories beyond Horndeski:

dPr

dr
= −ρGN

M

r2
− Υ

4
ρGNM

′′ .

Υ quantifies the deviation from standard gravity.

I Considering stellar pressure anisotropy (Pr 6= P⊥)

dPr

dr
= −ρGN

M

r2
− Υ

4
ρGNM

′′+∆(r) , with ∆(r) =
2

r
(P⊥ − Pr ) .

⇑
All the above formulas are valid under the approximation of spherical

symmetry.

I (P⊥ − Pr ) = β(r)Pr (r) , β(r) = τ(r/r0)2

I τ → Anisotropy parameter: Tunes the strength of anisotropy.

I r0 → Appropriate length scale, depends on the stellar modeling.

H. Heintzmann and W. Hillebrandt, Astron. & Astrophys, 38, 51 (1974).



6/15

Very Low Mass objects (Polytropes with n = 1.5)

M < Mmmhb M > Mmmhb

Very low mass 
(VLM) stars

Very low mass (VLM) objects

Brown dwards 
(BD)s

I In isotropic Newtonian case:
Mmmhb ∼ 0.080M�.

I Over-massive BDs for +ve Υ, τ ,

I Lowest mass main-sequence stars
= 0.093M� =⇒ Υ ≤ 1.6
(isotropic).
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Figure: Mmmhb (in units of M�) as a function of Υ
for different τ .

G. Chabrier and I. Baraffe, Ann. Rev. Astron. Astrophys. 38 337-377 (2000).
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White dwarfs (Polytropes with n = 3.0)

M = 4π

∫ R

0

ρ(r)r2dr = −4πr3
c ρcξ

2
Rθ
′(ξR) ,

I The value of M for
Υ = 0 = τ is the
Chandrasekhar mass limit
MCH = 1.4M�.

I For τ = 0, Υ = 1.6 =⇒
M = 2.1M�.

I For τ = 0.01, Υ = 1.6
=⇒ M = 2.6M�.

I Super-Chandrasekhar
white dwarfs have been
reported in the past.
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Figure: Mass of WD (in units of MCH) as a function of
Υ for different τ values.

Jain, R. K., Kouvaris, C., & Nielsen, N. G. 2016, PhRvL, 116, 151103
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Modified gravity theory in Composite stellar model

Q: What happens when a low mass star depletes central H completely ?

A: Develops a core-envelope structure with hydrogen burning shell.

Log10(Teff)
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F. Hoyle and M. Schwarzschild, Astrophys. J. Supp. 2 (1955) 1.
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Results from numerical analysis
I Overall gravity weakens with increase in Υ:

I The stellar radius increases.

I The effective temperature decreases.

I The luminosity decreases.

I Near the core, gravity strengthens with increase in Υ:
I The core radius decreases.

I The temperature increases at the core-envelope junction.

I The density increases at the core-envelope junction.

I Rule of thumb:

dP(r)

dr
= −GNM(r)

r2
ρ(r) − Υ

4
GNρ(r)

[
8πrρ+ 4πr2 dρ

dr

]
=⇒ higher Υ strengthens gravity, near the stellar center, although

it weakens gravity far away from it.

R. Saito, et al., JCAP 06 (2015) 008.
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Effect on the Schönberg-Chandrasekhar (SC) limit
Q: How long the hydrogen shell burning continues ?

A: Untill the core can support the pressure of overlying envelope.

I SC limit → Max core
mass fraction.

I SC limit = f (α).
(isotropic & Newtonian)

I SC limit = f (α, τ ,Υ).

I Positive τ , Υ ⇒ SC
limit decreases.

I Negative τ , Υ ⇒ SC
limit increases.

I Higher SC limit ⇒
Increased lifetime of H
shell burning phase.
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Figure: Schematic SC limit.
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Analytic formalism: slow rotation in MG theories
I Equations of mechanical equilibrium

∂P

∂r
= −ρ∂Φ

∂r
+ ρΩ2r(1− µ2) ,

∂P

∂µ
= −ρ∂Φ

∂µ
− ρΩ2r2µ

I Modified Poisson’s equation:
{beyond-Horndeski, Palatini f (R), EiBI gravity}

∇2Φ = 4πGNρ+ LΦmod(r , µ)

⇓

I Modified Lane-Emden equation (MLEE)

1

ξ2

∂

∂ξ

(
ξ2 ∂Θ

∂ξ

)
+

1

ξ2

∂

∂µ

(
(1− µ2)

∂Θ

∂µ

)
= −Θn + v + gmod(ξ, µ)

I Dimensionless variables and modification terms

ρ = ρcΘn, r = rcξ with r2
c = K(n+1)ρ

( 1
n
−1)

c

4πGN

v = Ω2

2πGNρc
, gmod = − LΦmod

4πGNρc
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Analytic formalism: Forms of functions

I We assume the following form for Θ

Θ(ξ, µ) = θ(ξ) + vΨ(ξ, µ)

Ψ(ξ, µ) = ψ0(ξ) +
∞∑
j=1

Ajψj(ξ)Pj(µ)

I Similarly, we need to make the following choice for gmod

gmod(ξ, µ) = gmod0(ξ) + v g̃mod(ξ, µ),

g̃mod(ξ, µ) = ¯̃gmod(ξ) +
∞∑
j=1

¯̃̄gmodj(ξ)Pj(µ)

Chandrasekhar, S., (communicated by Milne, E., A.) 1933, MNRAS, 93, 5, 390.
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Analytic formalism: Complete solution of MLEE
I The complete analytic form of the solution Θ is obtained as follows:

Θ(ξ, µ) = θ(ξ) + v
[
ψ0(ξ) +

{
−5

6

ξ2
1

[3ψ2(ξ1) + ξ1ψ
′
2(ξ1)]

}
ψ2(ξ)P2(µ)

]
↓
A2

I The component functions satisfy the following equations

1

ξ2

∂

∂ξ

(
ξ2 ∂θ

∂ξ

)
= −θn + gmod0(ξ)

1

ξ2

∂

∂ξ

(
ξ2 ∂ψ0

∂ξ

)
= −nθn−1ψ0 + 1 + ¯̃gmod(ξ)

1

ξ2

∂

∂ξ

(
ξ2 ∂ψ2

∂ξ

)
=
( 6

ξ2
− nθn−1

)
ψ2 +

¯̃̄gmod2(ξ)

A2

I Boundary conditions:

θ(0) = 1, θ′(0) = 0; ψ0(0) = 0, ψ′0(0) = 0; ψ2(0) = 0, ψ′2(0) = 0.
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Rapid uniform rotation in VLM objects

I For a given Ω we obtain a
transition mass range

Mmmhb(Ω) ≤M ≤Mmax(Ω)

I Mmmhb increases with Ω.

I Mmax decreases with Ω.

I The transition mass range
gradually decreases with Ω
and reduces to a single
point at a particular
Ωmax ∼ 0.0047s−1

(22 mins).

I Model solutions for VLM
objects do not exist beyond
this maximal rotation.
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Summary

I The hydrostatic pressure balance equation gets altered in presence of
small stellar pressure anisotropy in modified gravity theories.

I Therefore, retaining spherical symmetry we obtained modifications in
the stellar and substellar observables.

I We compared such modified predictions with observational data to
put bounds on the modified gravity parameter.

I We then relaxed the spherical symmetry to incorporate slow stellar
rotation in any modified gravity theory in general.

I We finally studied rapid rotation in VLM objects and obtained
important limits.

Thank You All !


