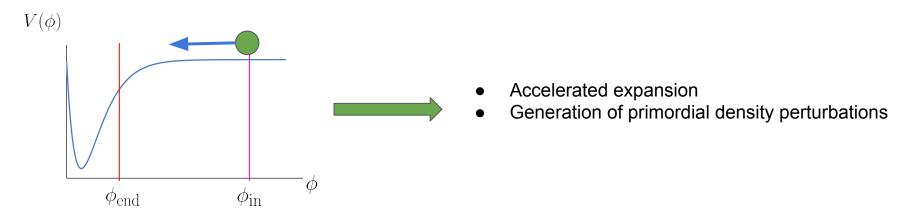
Oscillons from Higgs Inflation


Matteo Piani

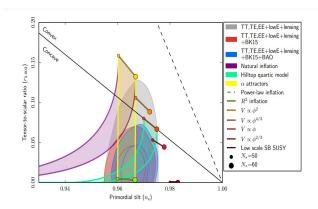
Based on arXiv:2304.13056 with Javier Rubio

Inflation, and then what?

A scalar field to solve problems of standard cosmology and seed the perturbations leading to structure formation

Inflation alone would leave the Universe COLD and EMPTY

Post-Inflationary to-do list:


- 1. Fill the Universe with SM particles(Preheating)
- 2. Reach thermal equilibrium (Reheating)

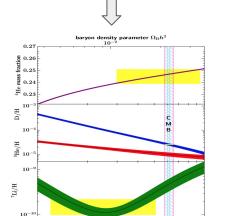
Matteo Piani Dark Matter And Stars 03/05/2023 1/9

Connecting what we know

Inflation

Planck collaboration, Astron. Astrophys. 641 (2020)

(P)Reheating



Knowledge required Inflaton couplings with SM

Phenomenological signatures
Gravitational waves signal
Modified cosmic evolution

Big Bang Nucleosynthesis

By Paleo2 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid =89986647

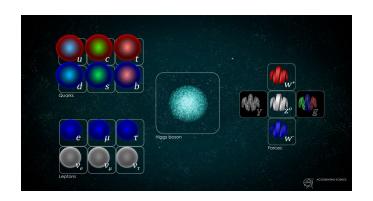
baryon-to-photon ratio $\eta = n_b/n_\gamma$

Matteo Piani Dark Matter And Stars 03/05/2023 2/9

Choose your inflaton: The SM Higgs

Encyclopædia Inflationaris

Jérôme Martin,^a Christophe Ringeval^b and Vincent Vennin^a


^aInstitut d'Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris (France)

bCentre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium)

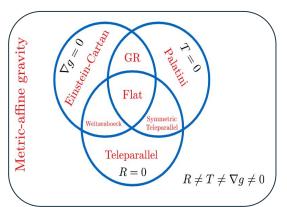
3	Zero Parameter Models	23
	3.1 Higgs Inflation (HI)	23
4	One Parameter Models	31
	4.1 Radiatively Corrected Higgs Inflation (RCHI)	31
	4.2 Large Field Inflation (LFI)	37
	4.3 Mixed Large Field Inflation (MLFI)	41
	4.4 Radiatively Corrected Massive Inflation (RCMI)	44
	4.5 Radiatively Corrected Quartic Inflation (RCQI)	47
	4.6 Natural Inflation (NI)	49
	4.7 Exponential SUSY Inflation (ESI)	54
	4.8 Power Law Inflation (PLI)	57
	4.9 Kähler Moduli Inflation I (KMII)	60 65
	4.10 Horizon Flow Inflation at first order (HF1I) 4.11 Colemann-Weinberg Inflation (CWI)	68
	4.12 Loop Inflation (LI)	72
	4.12 Loop limaton (EI) 4.13 $(R + R^{2p})$ Inflation (RpI)	77
	4.14 Double-Well Inflation (DWI)	81
	4.15 Mutated Hilltop Inflation (MHI)	85
	4.16 Radion Gauge Inflation (RGI)	87
	4.17 MSSM Inflation (MSSMI)	89
	4.18 Renormalizable Inflection Point Inflation (RIPI)	96
	4.19 Arctan Inflation (AI)	100
	4.20 Constant n ₈ A Inflation (CNAI)	103
	4.21 Constant n ₈ B Inflation (CNBI)	108
	4.22 Open String Tachyonic Inflation (OSTI)	111
	4.23 Witten-O'Raifeartaigh Inflation (WRI)	115
5	Two Parameters Models	120
	5.1 Small Field Inflation (SFI)	120
	5.2 Intermediate Inflation (II)	123
	5.3 Kähler Moduli Inflation II (KMIII)	128
	5.4 Logamediate Inflation (LMI)	134
	5.5 Twisted Inflation (TWI)	138
	5.6 Generalized MSSM Inflation (GMSSMI)	143
	5.7 Generalized Renormalizable Point Inflation (GRIPI)	148
	5.8 Brane SUSY breaking Inflation (BSUSYBI)	152
	5.9 Tip Inflation (TI)	155
	5.10 β exponential inflation (BEI)	161
	5.11 Pseudo Natural Inflation (PSNI)	163
	5.12 Non Canonical Kähler Inflation (NCKI)	167
	5.13 Constant Spectrum Inflation (CSI)	170
	5.14 Orientifold Inflation (OI)	173
	5.15 Constant n ₈ C Inflation (CNCI)	177
	5.16 Supergravity Brane Inflation (SBI)	180
	5.17 Spontaneous Symmetry Breaking Inflation (SSBI) 5.18 Inverse Monomial Inflation (IMI)	183 192
	5.19 Brane Inflation (BI)	194
e	Three parameters Models	203
0	6.1 Running-mass Inflation (RMI)	203
	6.2 Valley Hybrid Inflation (VHI)	207
	6.3 Dynamical Supersymmetric Inflation (DSI)	212
	6.4 Generalized Mixed Inflation (GMLFI)	215
	6.5 Logarithmic Potential Inflation (LPI)	218
	6.6 Constant n _S D Inflation (CNDI)	221

Let's use the only scalar we know

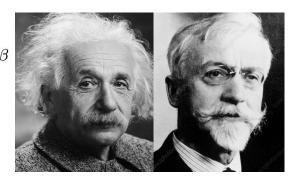
$$U(h) = \frac{\lambda}{4}(h^2 - v^2)^2$$

Gravity enters the game

Non-minimal coupling


$$\frac{\xi h^2}{2}R$$

Allowed by symmetries Necessary for consistency


Matteo Piani Dark Matter And Stars 03/05/2023 3/9

Choose your gravity: Einstein-Cartan

$$g_{\alpha\beta} = e_{\alpha}^{A} e_{\beta}^{B} \eta_{AB} , \quad \eta_{AB} = e_{A}^{\alpha} e_{B}^{\beta} g_{\alpha\beta}$$
$$\Gamma_{\nu\mu}^{\kappa} = e_{A}^{\kappa} \left(\partial_{\mu} e_{\nu}^{A} + \omega_{\mu B}^{A} e_{\nu}^{B} \right)$$

Élie Cartan You know him

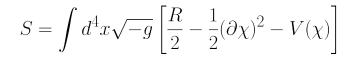
- Tetrads and spin-connection are the fundamental variables
- Obtained by gauging the Poincaré group
- Non-vanishing torsion
- Fermions are naturally introduced in the theory

The connection is not assumed to be symmetric a priori $\longrightarrow T^{\mu}_{\ \nu\rho} = \Gamma^{\mu}_{\ \nu\rho} - \Gamma^{\mu}_{\ \rho\nu}$

$$T^{\mu}_{\nu\rho} = \Gamma^{\mu}_{\nu\rho} - \Gamma^{\mu}_{\rho\nu}$$

Matteo Piani **Dark Matter And Stars** 4/9 03/05/2023

Avoiding the Einstein-Cartan Multiverse


Many extra operators are allowed, we focus on a representative one

Nieh-Yan Topological Invariant

$$-\frac{1}{4} \int d^4x \, \xi_{\eta} h^2 \partial_{\mu} \left(\sqrt{-g} \epsilon^{\mu\nu\rho\sigma} T_{\nu\rho\sigma} \right)$$

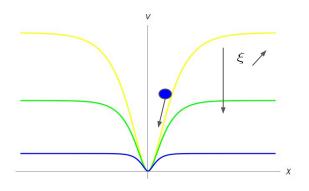
Einstein-Frame: original recipe

- Remove the coupling to curvature
 with a Weyl rescaling of the metric
- 2. Solve the equation of motion for the non-dynamical anti-symmetric part of the connection
- 3. Plug back the solution into the action
- 4. Make the field canonical

Fixed by CMB

$$c = \xi + 6\xi_{\eta}^{2}$$
$$c = \frac{2}{5}\lambda N^{2} \cdot 10^{7}$$

$$V \simeq \frac{\lambda}{4\xi^2} \left[1 - \exp\left(-\frac{2\xi|\chi|}{\sqrt{c}}\right) \right]^2$$


The model only has 1 free parameter

Matteo Piani Dark Matter And Stars 03/05/2023 5/9

Preheating

At first order in perturbation theory we get

$$\delta \ddot{\chi}_{\mathbf{k}} + 3H\delta \dot{\chi}_{\mathbf{k}} + \underbrace{\left(\frac{\mathbf{k}^2}{a^2(t)} + \frac{\mathrm{d}^2 V(\chi)}{\mathrm{d}\chi^2} \bigg|_{\chi = \overline{\chi}(t)}\right)}_{\text{Possible tachyonic instability}} \delta \chi_{\mathbf{k}} = 0$$

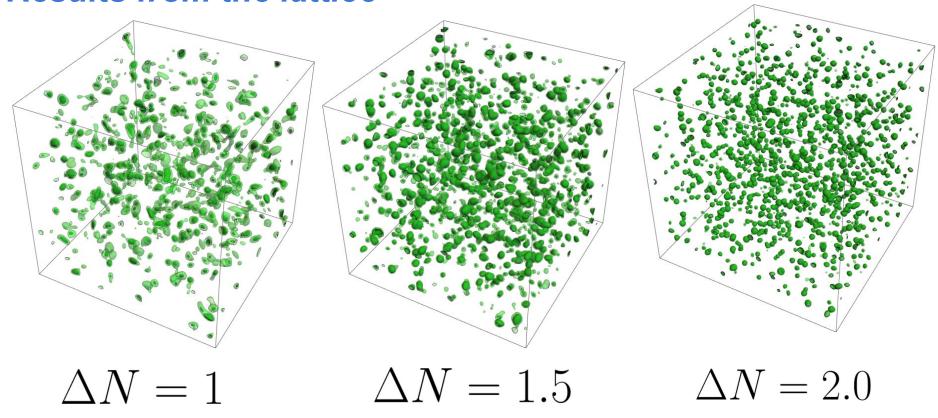
Rapid growth of perturbations at low momenta ———

Backreaction

Fragmentation

Formation of non-linear structures of fixed physical size called **oscillons**.

Oscillons


- Pseudo-solitonic objects
- Quasi-spherical shape
- Similar to boson stars (and Q-balls)

Related phenomena

- Production of sizeable amount of gravitational waves
- Non-standard expansion history
- Change of the inflationary observables

Matteo Piani Dark Matter And Stars 03/05/2023 6/9

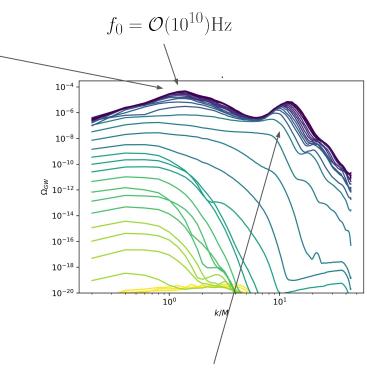
Results from the lattice

Matteo Piani Dark Matter And Stars 03/05/2023 8/9

Gravitational waves production

The fragmentation of the condensate can lead to the generation of a stochastic gravitational wave background

$$\ddot{h}_{ij} + 3H\dot{h}_{ij} - a^{-2}\nabla^2 h_{ij} = 2a^{-2}\Pi_{ij}^{TT}$$


$$\Pi_{ij}^{\mathrm{TT}} = (\partial_i \chi \partial_j \chi)^{\mathrm{TT}}$$

Strong signal

High frequency

Oscillons themselves can source a secondary peak at larger frequencies

Matteo Piani Dark Matter And Stars 03/05/2023 8/9

Conclusions

- For the first time we have observed the presence of oscillons in the context of Higgs-Inflation
- Oscillons can appear for a wide range of parameters
- Their presence can source a sizeable amount of GWs, providing an extra observational channel besides inflation
- Fermions and gauge bosons are not expected to spoil oscillons formation, but can play a role once they have formed

Matteo Piani **Dark Matter And Stars** 03/05/2023 9/9

Thank you!