

UNIVERSIDADE Ð COIMBRA

Primordial Black Holes as laboratories for Physics beyond the standard scenarios

Darck Matter and Stars, Marco Calzà

Beyond what?

BSM

A new way to probe the total number of ALPs with m < few MeV through the spin distribution of PBHs that are evaporating today!

BGR

A way to probe the beyond the horizon structure through the dynamics of evaporation (M, a, T) of BHs!

Ingredients

Scalar field with a shift symmetry in 4D
No mass terms by perturbative effects
Mass is generated by non-perturbative effects

String theory compactification: 6 extra d + many ways to compactify => $(N_a \sim [100-10^5])$

PBHs are BHs formed in the early Universe

Through the gravitational collapse of **overdensities** in the **cosmic plasma**

Masses can be several orders of magnitude below the solar mass

 $M \sim 10^{12}$ kg evaporates enough to show changes in a_{*} in presence of many scalars. (T > few MeV)

BH evaporation

Spacetime before and after the formation of an horizon

(Hawking 1975) $n_{\omega} = \frac{1}{\left(e^{\frac{2\omega\pi}{\kappa}} - 1\right)}$, $T_{H} = \frac{\kappa}{2\pi}$

$$\Delta^{-s} \frac{d}{dr} \left(\Delta^{s+1} \frac{dR}{dr} \right) + \left(\frac{K^2 - 2is(r-M)K}{\Delta} + 4is\omega r - \lambda \right) R = 0 \quad \dots$$

Evaporating BH: $M \downarrow \& T_{H}^{\uparrow} \rightarrow$ emitted particle set changes!!! Particles emission with $m > T_{H}$ is exponentially suppressed

Approximation: particles are considered **massless** for $m < T_{\rm H}$ and are **otherwise absent** from the emission spectrum.

ALPs \rightarrow s=0 leading mode l=m=0 \rightarrow J/M² = a* \uparrow

Axiverse fingerprint in PBHs evaporation

Present PBH spin, a_{*0} , as a function of their present mass, M_0 , for an initial population with spin $a_* = 0.01$, 0.99 and varying mass. Curves labeled by number of light ALPs.

Why is this so interesting?

ALPs \rightarrow cosmological and astrophysical effects \rightarrow signatures of individual axions (mass ranges), not of the whole 'string axiverse'.

The **PBH spin distribution** from **evaporation** process in the presence of **many light scalar** fields **cannot**, to our knowledge, be **mimicked** by other processes \rightarrow **unique signature** of an **underlying theory** with a large number of light scalars.

How to go Beyond GR?

$$\nabla^{\mu}\nabla_{\mu}\Phi=0 \Rightarrow \frac{1}{\sqrt{-g}}\partial^{\mu}(\sqrt{-g}g_{\mu\nu}\partial^{\nu})\Phi=0 \Rightarrow \cdots$$

Take a metric not vacuum solution of GR
Kerr-black-bounce: $r=\sqrt{\tilde{r}^{2}+\ell^{2}}$

$$ds^{2} = -\left(1 - \frac{2Mr^{2}}{\Sigma}\right)dt^{2} + \frac{\Sigma}{\delta\Delta}dr^{2} + \Sigma d\theta^{2} + \frac{A\sin^{2}\theta}{\Sigma}d\phi^{2} - \frac{4Mar\sin^{2}\theta}{\Sigma}dtd\phi,$$

$$\Sigma = r^{2} + a^{2}\cos^{2}\theta, \qquad \Delta = r^{2} + a^{2} - 2Mr, \qquad A = (r^{2} + a^{2})^{2} - \Delta a^{2}\sin^{2}\theta, \qquad \delta = 1 - \frac{\ell^{2}}{r^{2}}$$

Same M and T evolutions

Primary scalar emission

Why is this so interesting?

BH structure \rightarrow Event Horizon \rightarrow differences in the Hawking emission.

No information is coming from inside the EH but in a certain sense you can look inside with out looking inside!!!

Marco Calzà, John March-Russell, João G. Rosa,

"Evaporating primordial black holes, the string axiverse, and hot dark radiation", ArXiv:2110.13602

Marco Calzà, "Evaporation of a Kerr-black-bounce by emission of scalar particles", Phys.Rev.D 107 (2023) 4, 044067

Thanks for your attention!!!

