

Mapping the landscape of gravity theories

Serena Giardino

Max Planck Institute for Gravitational Physics Heidelberg University

In collaboration with Valerio Faraoni (Bishop's U.), Andrea Giusti (ETH Zurich), Lavinia Heisenberg (Heidelberg U.)

Dark Matter & Stars, Lisbon

05/05/2023

(A portion of) the landscape

¹J. M. Ezquiaga, M. Zumalacarregui, Front. Astron. Space Sci. 5:44 (2018) - arXiv:1807.09241

Big-picture goal

Explore generalisations of GR

 \Downarrow

Understand GR as a special case in a broader framework

 \Downarrow

Attempt to overcome limitations of GR (and learn about universe in the process)

Thermodynamics and gravity

- Thermodynamics ⇔ gravity?
- "Thermodynamics of gravitational theories"
- Question: what exactly is the dissipative process leading to equilibrium from non-equilibrium?
- Question: what is the order parameter measuring closeness to equilibrium?

²T. Jacobson, PRL 75 (1995) - arXiv:gr-qc/9504004

³C. Eling, R. Guedens, T. Jacobson, PRL 96 (2006) - arXiv:gr-qc/0602001

The plan

- Take scalar-tensor gravity, containing $f(\mathcal{R})$ as subclass 4
- Model scalar contribution as effective dissipative fluid ⁵
- Apply irreversible non-equilibrium thermodynamical description, such as Eckart's ⁶
- Extract thermodynamical quantities such as temperature and viscosity
- Understand dissipative process

⁴T. Sotiriou & V. Faraoni, Rev. Mod. Phys 82 (2010) - arXiv:0805.1726

⁵V. Faraoni & J. Coté, PRD 98 (2018) - arXiv:1808.02427

⁶C. Eckart, Phys. Rev. 58 (1940)

Imperfect fluid description of modified gravity

· Brans-Dicke scalar-tensor action (Jordan frame) ($G_{
m eff}=1/\phi$)

$$S_{\rm ST} = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[\phi \mathcal{R} - \frac{\omega(\phi)}{\phi} \nabla^c \phi \nabla_c \phi - V(\phi) \right] + S^{(\rm m)}$$

· Effective Einstein equations

$$G_{ab} = 8\pi G_{\text{eff}} T_{ab}^{(m)} + 8\pi T_{ab}^{(\phi)}$$

- Study thermodynamics of imperfect fluid $T_{ab}^{(\phi)}=\rho^{(\phi)}~u_au_b+q_a^{(\phi)}u_b+q_b^{(\phi)}u_a+\Pi_{ab}^{(\phi)}$
- $\nabla_a \phi$ timelike + future-oriented \Rightarrow natural fluid interpretation

• 4-velocity
$$u^a = \frac{\nabla^a \phi}{\sqrt{-\nabla^e \phi \nabla_e \phi}}$$
 with $u^a u_a = -1$

5

Eckart's thermodynamics

$$P_{\text{vis}}^{(\phi)} = -\zeta \theta$$

$$q_a^{(\phi)} = -\mathcal{K} \left(h_{ab} \nabla^b \mathcal{T} + \mathcal{T} \dot{u}_a \right)$$

$$\pi_{ab}^{(\phi)} = -2\eta \, \sigma_{ab}$$

- Non-equilibrium (irreversible) thermodynamics
- "1st order": simplest (linear) assumptions to satisfy $S^{\alpha}_{;\alpha} \geq 0$
- Relativistic generalisations of Stokes' law, Fourier's law and Newton's law of viscosity

Temperature and viscosity of ϕ -fluid

- Comparing \dot{u}_a and $q_a^{(\phi)}$

$$q_a^{(\phi)} = -\frac{\sqrt{-\nabla^c \phi \nabla_c \phi}}{8\pi \phi} \dot{u}_a \quad \Rightarrow \quad \mathcal{KT} = \frac{\sqrt{-\nabla^c \phi \nabla_c \phi}}{8\pi \phi} \ge 0$$

- Temperature "of scalar-tensor gravity", relative to GR ⁷
- GR limit: $\mathcal{KT} \to 0$ when $\phi = \mathrm{const.} \Rightarrow G_{\mathrm{eff}} = G_{\mathrm{N}}$, no ϕ -fluid

⁷V. Faraoni, A. Giusti, PRD 103 (2021) - arXiv:2103.05389

Fixed points of dissipation equation

 Approach to equilibrium governed by effective heat equation for φ-fluid

$$\frac{d(\mathcal{KT})}{d\tau} = 8\pi(\mathcal{KT})^2 - \theta\mathcal{KT} + \frac{\Box\phi}{8\pi\phi}$$

$$\mathcal{KT} = 0 \qquad \qquad \mathcal{KT} = \mathrm{const.}$$

$$\mathrm{GR} + \mathrm{theories} \ \mathrm{with} \qquad \qquad \mathrm{Scalar-tensor}$$

$$\mathrm{non-dynamical} \ \phi^{\ 8} \qquad \qquad \mathrm{stealth} \ \mathrm{solutions}^9$$

· GR seems to be the only stable equilibrium!

⁸V. Faraoni, A. Giusti, S. Jose, S. Giardino, PRD 106 (2022) - arXiv:2206.02046

⁹S. Giardino, A. Giusti, V. Faraoni - arXiv:2302.08550

Mapping the landscape

- Thermodynamical analogy ⇒ map of gravity theories landscape
- GR: special role as the only stable equilibrium at $\mathcal{KT}=0$
- Modified theories with additional dynamical degrees of freedom always have $\mathcal{KT}>0$
- Nordström gravity with less degrees of freedom than GR has $\mathcal{KT} < 0$ (pathological)
- Dissipative relaxation process to GR in most cases, but not guaranteed

Intuitive picture

Further developments

Summary

- Connection between thermodynamics and gravity
- Jacobson's idea: GR equilibrium state, modified gravity non-equilibrium ⇒ open questions
- New perspective: effective fluid approach to S-T theories + Eckart's non-equilibrium thermodynamics → T of modified gravity, relative to GR
- Mapping the landscape of gravity theories with goal of understanding GR in more general framework
- \cdot $\mathcal{KT} > 0$ whenever additional dynamical dof
- GR special as the only stable equilibrium state!

Thank you for your attention!