# Anisotropic stars made of exotic matier in light of the complexitu factor formalism 

Ángel Rincón<br>in collaboration with<br>G. Panotopoulos and I. Lopes

University of Alicante


Lisbon, May 04, 2023

## Outline

- Introduction
- Relativistic stars in General Relativity
- Anisotropic matter: Complexity factor
- Results and Discussion
- Take home message


## Introduction

1- Celestial bodies are not always made of isotropic fluid only!

2- Anisotropic stars can be made, at least theoretically, of exotic matter (as dark matter).

3- To study anisotropic stars, usually it is necessary to consider a concrete form of the anisotropic factor (problem!)

4- To bypass that, we will consider the complexity factor formalism to close the system and obtain the physical properties of such anisotropic stars.

## Relativistic stars in General Relativity

In absence of cosmological constant term, the classical Einstein field equations acquire the simple form:

$$
G_{\mu}^{\nu}=8 \pi G_{\mu}^{\nu}
$$

The covariant energy-momentum tensor can be expressed in local Minkowski coordinates as

$$
T_{\nu}^{\mu}=\left\{\rho, P_{r}, P_{\perp}, P_{\perp}\right\}
$$

and the resulting field equations take the form:

## Relativistic stars in General Relativity

$$
\begin{aligned}
& \rho=-\frac{1}{8 \pi}\left[-\frac{1}{r^{2}}+e^{-\lambda}\left(\frac{1}{r^{2}}-\frac{\lambda^{\prime}}{r}\right)\right], \\
& P_{r}=-\frac{1}{8 \pi}\left[\frac{1}{r^{2}}-e^{-\lambda}\left(\frac{1}{r^{2}}+\frac{\nu^{\prime}}{r}\right)\right], \\
& P_{\perp}=\frac{1}{32 \pi} e^{-\lambda}\left(2 \nu^{\prime \prime}+\nu^{\prime 2}-\lambda^{\prime} \nu^{\prime}+2 \frac{\nu^{\prime}-\lambda^{\prime}}{r}\right),
\end{aligned}
$$

where the derivatives with respect to $r$ are denoted by primes.

## Relativistic stars in General Relativity

We can combine the last equations to produce the generalized Tolman-Opphenheimer-Volkoff equation, i.e.

$$
-\frac{1}{2} \nu^{\prime}\left(\rho+P_{r}\right)-P_{r}^{\prime}+\frac{2}{r}\left(P_{\perp}-P_{r}\right)=0
$$

And removing the $\nu^{\prime}$ - dependence, we finally obtain the familiar equation

$$
P_{r}^{\prime}=-\frac{\left(m+4 \pi P_{r} r^{3}\right)}{r(r-2 m)}\left(\rho+P_{r}\right)+\frac{2}{r}\left(P_{\perp}-P_{r}\right)
$$

## Relativistic stars in General Relativity

In what follow, we will rewrite the energy-momentum tensor in a more convenient way:

$$
T_{\nu}^{\mu}=\rho u^{\mu} u_{\nu}-P h_{\nu}^{\mu}+\Pi_{\nu}^{\mu}
$$

we set the four-velocity and the four acceleration as follow:

$$
u^{\mu}=\left(e^{-\frac{\nu}{2}}, 0,0,0\right), \quad a^{\alpha}=u_{; \beta}^{\alpha} u^{\beta}
$$

Where the unique non--vanishing component of the acceleration is

$$
a_{1}=-\nu^{\prime} / 2
$$

## Relativistic stars in General Relativity

Notice that the set $\left\{\Pi_{\nu}^{\mu}, \Pi, h_{\nu}^{\mu}, s^{\mu}, P\right\}$ is taken according to

$$
\begin{aligned}
\Pi_{\nu}^{\mu} & =\Pi\left(s^{\mu} s_{\nu}+\frac{1}{3} h_{\nu}^{\mu}\right), \\
\Pi & =P_{\perp}-P_{r}, \\
h_{\nu}^{\mu} & =\delta_{\nu}^{\mu}-u^{\mu} u_{\nu}, \\
s^{\mu} & =\left(0, e^{-\frac{\lambda}{2}}, 0,0\right), \\
P & \equiv \frac{1}{3}\left(P_{r}+2 P_{\perp}\right),
\end{aligned}
$$

## Relativistic stars in General Relativity

with the properties

$$
s^{\mu} u_{\mu}=0, \quad s^{\mu} s_{\mu}=-1
$$

The problem should be supplemented using certain boundary conditions on the surface

$$
\begin{aligned}
e^{\nu_{\Sigma}} & =1-\frac{2 M}{R} \\
e^{-\lambda_{\Sigma}} & =1-\frac{2 M}{R} \\
{\left[P_{r}\right]_{\Sigma} } & =0
\end{aligned}
$$

## Anisotropic matter: Complexity factor

The complexity factor describes the influence of the local anisotropy of pressure and density inhomogeneity on the Tolman mass

$$
m_{T}=\left(m_{T}\right)_{\Sigma}\left(\frac{r}{r_{\Sigma}}\right)^{3}+r^{3} \int_{r}^{r_{\Sigma}} \frac{e^{(\nu+\lambda) / 2}}{\tilde{r}} Y_{T F} d \tilde{r},
$$

where

$$
Y_{T F}=8 \pi \Pi-\frac{4 \pi}{r^{3}} \int_{0}^{r} \tilde{r}^{3} \rho^{\prime} d \tilde{r}
$$

## Anisotropic matter: Complexity factor

To define the complexity factor, we need to perform the orthogonal decomposition of the Riemann tensor

$$
\begin{aligned}
& Y_{\alpha \beta}=R_{\alpha \gamma \beta \delta} u^{\gamma} u^{\delta} \\
& Z_{\alpha \beta}=R_{\alpha \gamma \beta \delta}^{*} u^{\gamma} u^{\delta}=\frac{1}{2} \eta_{\alpha \gamma \epsilon \mu} R^{\epsilon \mu}{ }_{\beta \delta} u^{\gamma} u^{\delta}, \\
& X_{\alpha \beta}=R_{\alpha \gamma \beta \delta}^{*} u^{\gamma} u^{\delta}=\frac{1}{2} \eta_{\alpha \gamma}{ }^{\epsilon \mu} R_{\epsilon \mu \beta \delta}^{*} u^{\gamma} u^{\delta},
\end{aligned}
$$

where

$$
R_{\alpha \beta \gamma \delta}^{*}=\frac{1}{2} \eta_{\epsilon \mu \gamma \delta} R_{\alpha \beta}{ }^{\epsilon \mu},
$$

## Anisotropic matter: Complexity factor

We rewrite last expressions in term of the physical variables as follow

$$
\begin{aligned}
& Y_{\alpha \beta}=\frac{4 \pi}{3}(\rho+3 P) h_{\alpha \beta}+4 \pi \Pi_{\alpha \beta}+E_{\alpha \beta} \\
& Z_{\alpha \beta}=0 \\
& X_{\alpha \beta}=\frac{8 \pi}{3} \rho h_{\alpha \beta}+4 \pi \Pi_{\alpha \beta}-E_{\alpha \beta}
\end{aligned}
$$

where

$$
E_{\alpha \beta}=C_{\alpha \gamma \beta \delta} u^{\gamma} u^{\delta},
$$

## Anisotropic matter: Complexity factor

We rewrite last expressions in term of the physical variables as follow

$$
\begin{gathered}
E_{\alpha \beta}=E\left(s_{\alpha} s_{\beta}+\frac{1}{3} h_{\alpha \beta}\right) \\
E=-\frac{e^{-\lambda}}{4}\left[\nu^{\prime \prime}+\frac{\nu^{\prime 2}-\lambda^{\prime} \nu^{\prime}}{2}-\frac{\nu^{\prime}-\lambda^{\prime}}{r}+\frac{2\left(1-e^{\lambda}\right)}{r^{2}}\right]
\end{gathered}
$$

The following properties must be satisfied:

$$
E_{\alpha}^{\alpha}=0, \quad E_{\alpha \gamma}=E_{(\alpha \gamma)}, \quad E_{\alpha \gamma} u^{\gamma}=0
$$

## Anisotropic matter: Complexity factor

Finally, last tensors can be represented in term of alternative scalar functions, i.e.,

$$
\begin{aligned}
X_{T} & =8 \pi \rho \\
X_{T F} & =\frac{4 \pi}{r^{3}} \int_{0}^{r} \tilde{r}^{3} \rho^{\prime} d \tilde{r}, \\
Y_{T} & =4 \pi\left(\rho+3 P_{r}-2 \Pi\right), \\
Y_{T F} & =8 \pi \Pi-\frac{4 \pi}{r^{3}} \int_{0}^{r} \tilde{r}^{3} \rho^{\prime} d \tilde{r},
\end{aligned}
$$

## Anisotropic matter: Complexity factor

Demanding a vanishing complexity factor, we can obtain the anisotropic factor by solving

$$
\Pi(r)=\frac{1}{2 r^{3}} \int_{0}^{r} \tilde{r}^{3} \rho^{\prime}(\tilde{r}) d \tilde{r}
$$

Given that a profound comprehension of the idea of complexity is still under construction, the connection between any equation of state and the definition of complexity factor is still missing.

## Anisotropic matter: Complexity factor

In what follow, we will take a Chaplyin equation-of-state to close the system

$$
P_{r}=A^{2} \rho(r)-B^{2} \rho(r)^{-1}
$$

and with help of a vanishing complexity factor, we solve the problem numerically.

Also, for comparison, we will check our solution vs the more conventional approach (i.e., assuming a concrete form of the anisotropic factor).

## Results and Discussion

We will use the following numerical values:
Case \# 1:

$$
A=\sqrt{0.400}, \quad B=0.230 \times 10^{-3} \mathrm{~km}^{-2} .
$$

Case \# 2:

$$
A=\sqrt{0.425}, \quad B=0.215 \times 10^{-3} \mathrm{~km}^{-2}
$$

Case \# 3:

$$
A=\sqrt{0.450}, \quad B=0.200 \times 10^{-3} \mathrm{~km}^{-2}
$$

## Results and Discussion

## 1- Complexity Factor Formalism



## Results and Discussion



## Results and Discussion

## 2- Conventional Approach

$$
\begin{gathered}
\Pi(r)=-\left(\frac{r}{a}\right)^{2} \rho(r) . \\
a \equiv a_{\text {large }}=30 \mathrm{~km} .
\end{gathered}
$$

## Results and Discussion



## Results and Discussion



## Take home message

The complexity factor formalism predicts smaller and lighter objects compared to the conventional approach, despite both cases having a negative anisotropic factor.

