INTERNATIONAL CONFERENCE

DARK MATTER AND STARS

Multi-Messenger probes of Dark Matter and Modified Gravity 3-5 MAY 2023

Black Hole Mergers In Cubic Gravity

Jorge Rocha

ISCTE-Instituto Universitário de Lisboa & CENTRA-Instituto Superior Técnico

⁻undação para a Ciência e a Tecnologia

Motivation

Context: There exists a plethora of viable modified gravity theories.

0

Among these, higher curvature corrections to GR are particularly well motivated.

Aim: Test a family of such theories (Einsteinian Cubic Gravity) in a strong field, highly dynamical regime.

Namely, we study how higher derivative corrections to GR affect BH merger events.

Approach:Focus on the extreme mass ratio (EMR) regime and adopt ray tracing techniques to
obtain the full evolution of the horizon.(Emparan-Martínez (2016))

Acknowledgments

Based on joint work with: João M. Dias Antonia M. Frassino Valentin D. Paccoia

"Black hole-wormhole collisions and the emergence of islands"

[arXiv: 2304.06098] (submitted)

(See Frassino's talk)

"The impact of higher derivative corrections to GR on black hole mergers"

[arXiv: 2306.????] (work in progress)

Overview

Using ray-tracing to study BH mergers in the EMR regime

BHs in Einsteinian Cubic Gravity (ECG)

2

BH mergers in ECG

0

3

A different way to take the EMR limit Keep small BH finite and take large BH to be infinite

 \bigcirc

principle:

In reference

field from the

unnoticeable

large BH is

Where did the large BH go?

1 Determination of the event horizon Boundary conditions select a congruence of null geodesics

0

In the far future the generators of the event horizon must approach a null hyperplane.

3D rendering of the full event horizon

1 2D time frames (for charged BH merger)

Image credit: João M. Dias (2022)

This approach has been applied to...

Mergers between non-rotating and neutral BHs.

(Emparan-Martínez (2016))

Mergers between spinning and neutral BHs.

✤ Mergers between a star and a large BH.

Mergers between charged, non-rotating BHs.

Mergers between a wormhole and a large BH.
 (See Frassino's talk)

(Emparan-Martínez-Zilhão (2017))

(Emparan-Marín (2020))

(Pina-Orselli-Pica (2022))

(Dias-Frassino-Paccoia-JR (2023))

0

 In effective low-energy theory of gravity, it is natural to organize corrections to the Einstein-Hilbert term by the number of derivatives:

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left\{ R + \frac{1}{M_{Pl}^2} \left(\text{terms quadratic in Riemman} \right) + \frac{1}{M_{Pl}^4} \left(\text{terms cubic in Riemman} \right) + O\left(M_{Pl}^{-6}\right) \right\}$$

ECG is the most general diff-invariant metric theory of gravity up to cubic order in curvature, whose linearized spectrum on maximally symmetric backgrounds coincides with that of GR (and for which the coefficients of higher-curvature corrections are dimension-independent).

(Bueno-Cano (2016)) (Hennigar-Mann (2016))

Static, spherically symmetric BH solutions of the form

0

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega^{2}$$

exist, as long as the blackening factor f(r) satisfies:

$$2GM = -(f-1)r - G^2\lambda \left[4f'^3 + 12\frac{f'^2}{r} - 24f(f-1)\frac{f'}{r^2} - 12ff''\left(f' - \frac{2(f-1)}{r}\right)\right]$$

Blackening factor profile for static, spherically symmetric, neutral BHs in ECG:

Charged BHs in ECG have intriguing properties (e.g., non-uniqueness) (Frassino-JR (2020))

Black hole mergers in ECG

- Having fixed a background geometry, integrate (backward in time) the null geodesic equations.
- Specific (asymptotic) boundary conditions are required.
- The collection of all these generators forms the event horizon.
- This can be done for any value of the coupling constant λ .

Comparing the duration of the merger

- There exists a coupling λ that yields the quickest merger.
- But large couplings λ result in mergers that are slower than those of GR.

Conclusion

Unconventional way of taking the EMR limit + + Equivalence Principle + Ray Tracing quick route to obtain the time
 evolution of the merger of compact objects.

This can be done for any (diff-invariant) modified theory of gravity.

* We applied it to determine the duration of BH mergers Einsteinian Cubic Gravity.

Outlook

Bound coupling constants of modified gravity theories from gravitational waves detections.

Useful as benchmark for numerical relativity simulations.