

Neutron stars beyond GR – from theory to astrophysical constraints

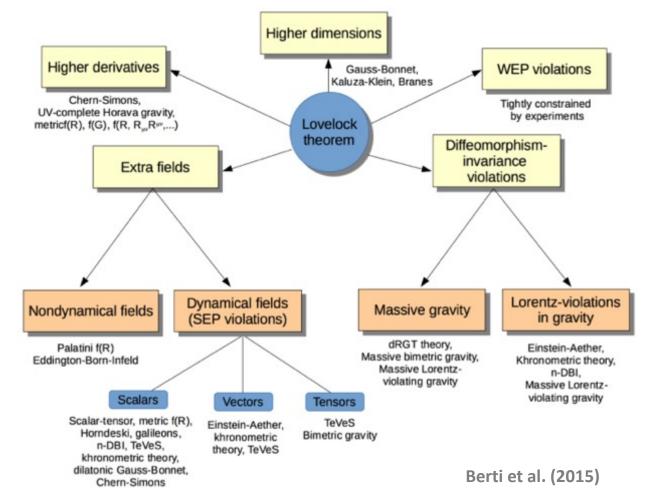
Daniela Doneva

University of Tübingen

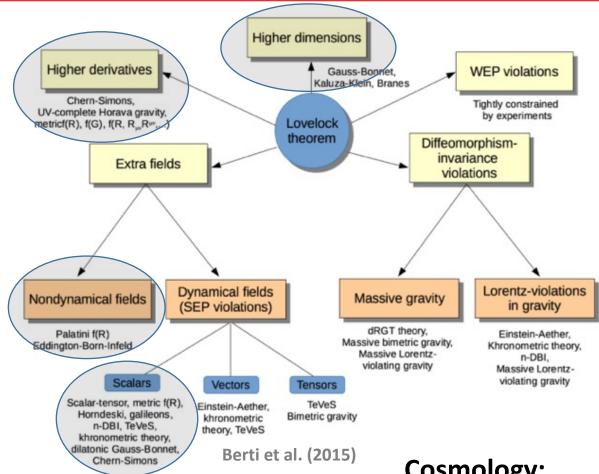
Lovelock's theorem

Einstein's field equations are unique if:

- ✓ we are working in **four dimensions**
- ✓ **diffeomorphism invariance** is respected
- ✓ the **metric** is the **only field** mediating gravity
- ✓ the equations are **second-order differential equations**.



Extra scalar field(s)



Quantum gravity motivated:

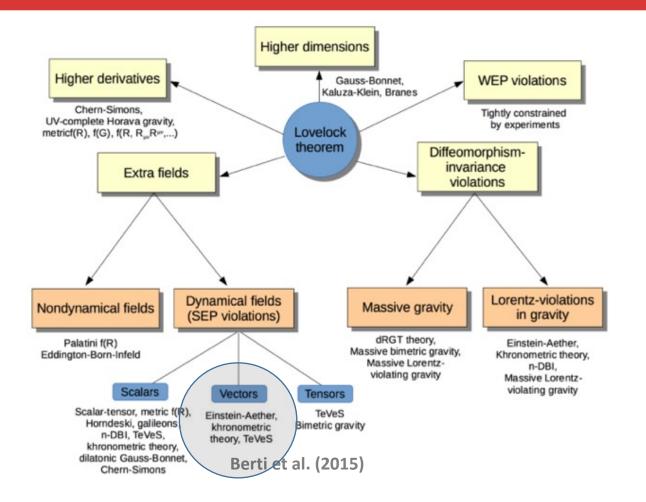
- Gauss-Bonnet gravity
- Chern-Simons gravity ۲

Cosmology:

- Ultralight axion dark matter
- Inflation scalar field
- f(R), Horndeski gravity

Daniela Doneva

Extra scalar field(s)

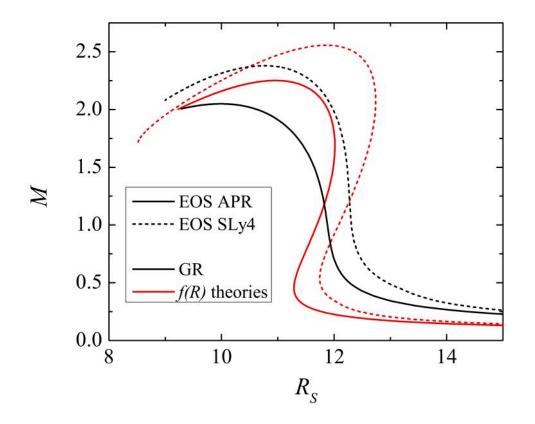


Vector fields:

 Instabilities that can not be easily overcome (see Silva, Coates, Ramazanoğlu, Sotiriou (2021))

Daniela Doneva

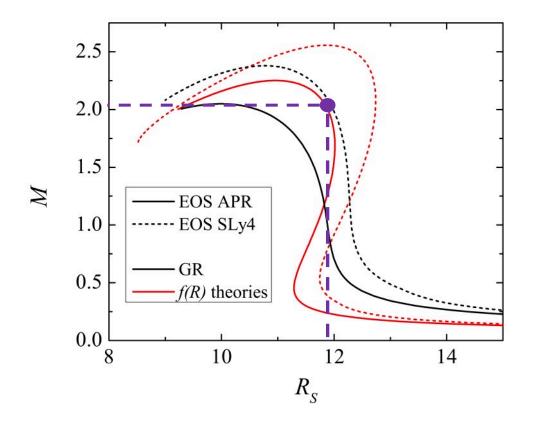
EOS uncertainty vs Modifying gravity



Modifying the theory of gravity ⇔ EOS uncertainty

Daniela Doneva

EOS uncertainty vs Modifying gravity



Modifying the theory of gravity ⇔ EOS uncertainty

Daniela Doneva

Quantitative vs. Qualitative

Daniela Doneva

Scalarized neutron star models

- General idea:
 - ✓ **Modified theory** of gravity **possessing** an additional mediator of the gravitational interaction a scalar field ϕ
 - \checkmark Perturbative equivalent to GR
 - ✓ Nonlinear effects for strong fields scalarization

• Action in GR

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{g} R + S_m[\psi_m, g_{\mu\nu}]$$
Matter action

• Action in GR

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{g} R + S_m[\psi_m, g_{\mu\nu}]$$
Matter action

• Action in scalar tensor theories (scalar field φ): Einstein frame

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{g} \left[R - 2g^{\mu\nu}\partial_{\mu}\varphi\partial_{\varphi}\varphi - 4V(\varphi) \right] + S_m [\psi_m, A^2(\varphi)g_{\mu\nu}]$$

Kinetic term Potential term Coupling term

• Scalar field equation

$$\Box \varphi = -4\pi G_* \alpha(\varphi) T,$$

where $\alpha(\varphi) = \frac{d \ln A(\varphi)}{d\varphi}$

• Spontaneous scalarization – the pure GR solution is unstable against scalar perturbations $\delta \varphi$

$$(\Box - \mu_{\text{eff}}^2)\delta\varphi = 0$$
, where $\mu_{\text{eff}}^2 = \frac{d\alpha}{d\varphi}|_{\varphi=0} 4\pi G_{\star}T$

• If $\mu_{eff}^2 < 0$ a **tachyonic instability** is present leading to a development of the scalar field

 Scalarization of neutron stars Damour&Esposito-Farese PRL (1993) due to a nonzero trace of the energy momentum tensor. Energetically more favorable over the GR solutions.

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{g} \left[R - 2g^{\mu\nu}\partial_{\mu}\varphi\partial_{\varphi}\varphi - 4V(\varphi) \right] + S_m [\psi_m, A^2(\varphi)g_{\mu\nu}]$$

Kinetic term Potential term Coupling term

 Scalarization of neutron stars Damour&Esposito-Farese PRL (1993) due to a nonzero trace of the energy momentum tensor. Energetically more favorable over the GR solutions.

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{g} \left[R - 2g^{\mu\nu}\partial_{\mu}\varphi\partial_{\varphi}\varphi - 4V\varphi \right] + S_m [\psi_m, A^2(\varphi)g_{\mu\nu}]$$

Kinetic term

 Scalarization of neutron stars Damour&Esposito-Farese PRL (1993) due to a nonzero trace of the energy momentum tensor. Energetically more favorable over the GR solutions.

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{g} \left[R - 2g^{\mu\nu}\partial_{\mu}\varphi\partial_{\varphi}\varphi - 4V\varphi \right] + S_m [\psi_m, A^2(\varphi)g_{\mu\nu}]$$

Kinetic term

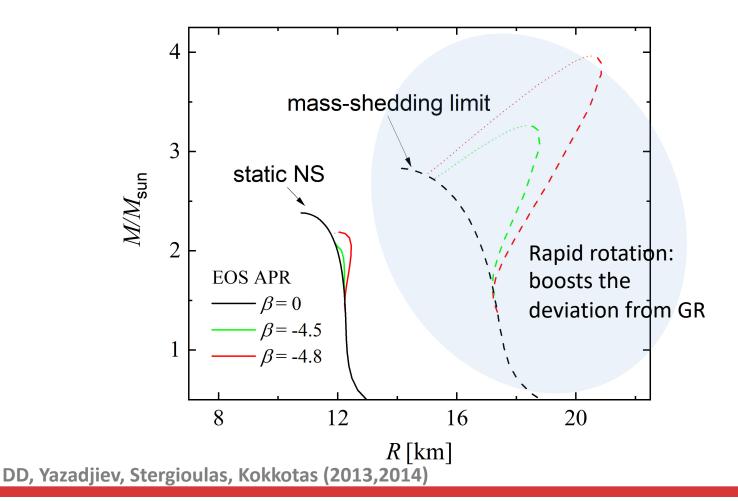
- Coupling function polynomial expansion in φ $\alpha(\varphi) = \frac{d \ln(A(\varphi))}{d\varphi} = \alpha_0 + \beta_0 \varphi$
- Reminder: $\Box \varphi = -4\pi G_* \alpha(\varphi) T$

$$\alpha(\varphi) = \alpha_0 + \beta_0 \varphi$$

• Brans-Dicke theory – $\varphi = 0$ NOT a solutions, ruled out by weak field observations

$$\alpha(\varphi) = \chi_0 + \beta_0 \varphi \text{ (reminder } \mu_{\text{eff}}^2 = \frac{d\alpha}{d\varphi}|_{\varphi=0} 4\pi G_\star T < 0)$$

• Original DEF model Damour&Esposito-Farese (1993)

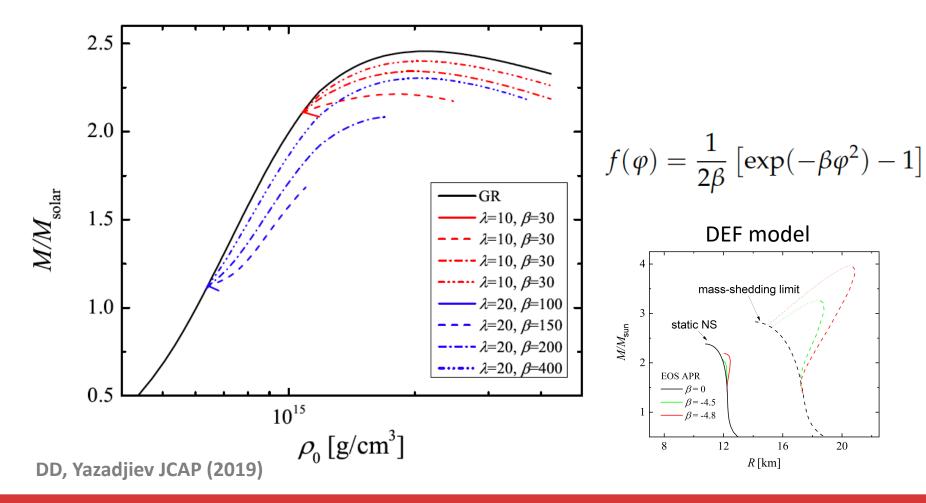


Daniela Doneva

NS scalarization in Gauss-Bonnet gravity

• Scalar field trigerred by the curvate itself through R_{GB}^2

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \Big[R - 2\nabla_{\mu} \varphi \nabla^{\mu} \varphi + \lambda^2 f(\varphi) \mathcal{R}_{GB}^2 \Big] + S_{\text{matter}}(g_{\mu\nu}, \chi)$$

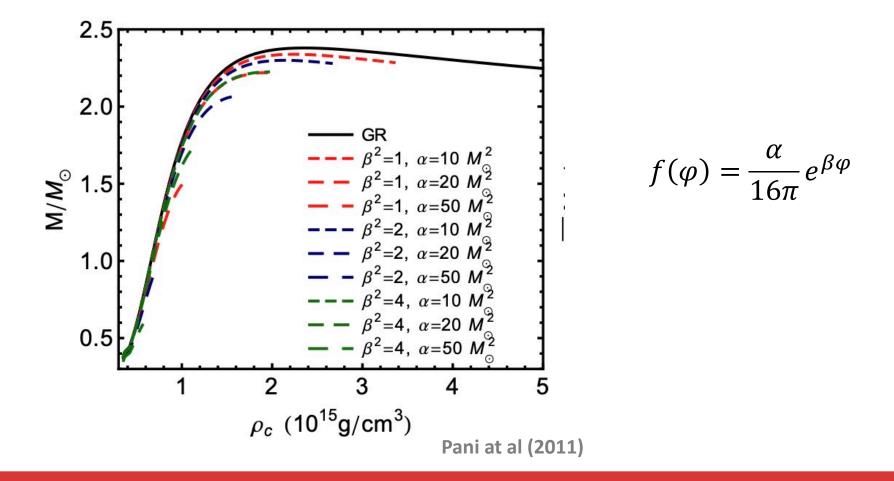


Daniela Doneva

Other NS models beyond GR

NS in Gauss-Bonnet gravity WITHOUT scalarization

- Scalarization not possible NS have always scalar field and $\varphi = 0$ not a solution of the field equations
- Static models Pani at al (2011) and rapid rotation Kleinhaus at al (2016)



Daniela Doneva

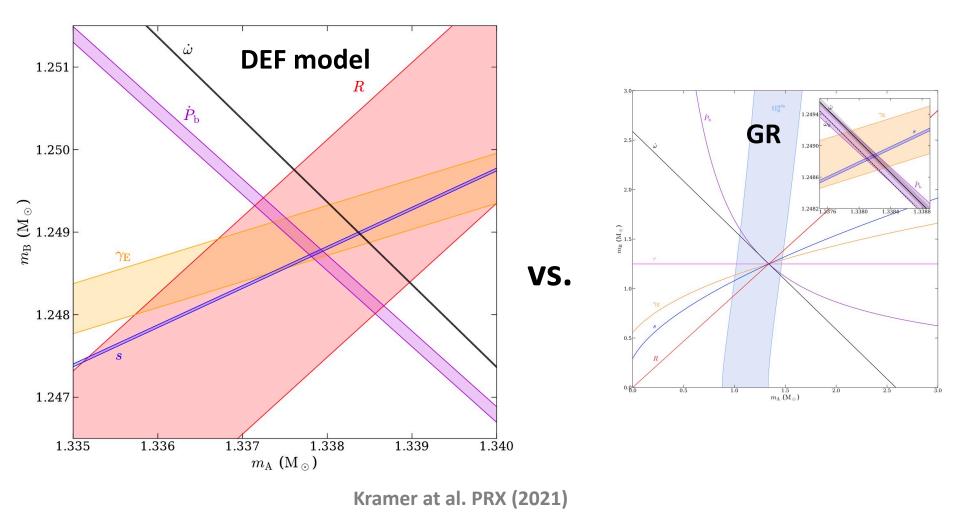
A selected list of theories with NS models:

- dynamcial Chern-Simons gravity Yunes at al PRD (2009)
- k-essence theories Bezares at al PRL (2022)
- f(R) gravity DD, Yazadjiev JCAP (2014)
- Tensor multi-scalar theories Horbatsch CQG (2015), DD, Yazadjiev PRD (2020)

Binary pulsar constraints

Binary pulsar constraints

• Lines fail to intersect in a single region (DEF model, $\alpha_0 = 5 \times 10^{-2}$, $\beta = -4$)

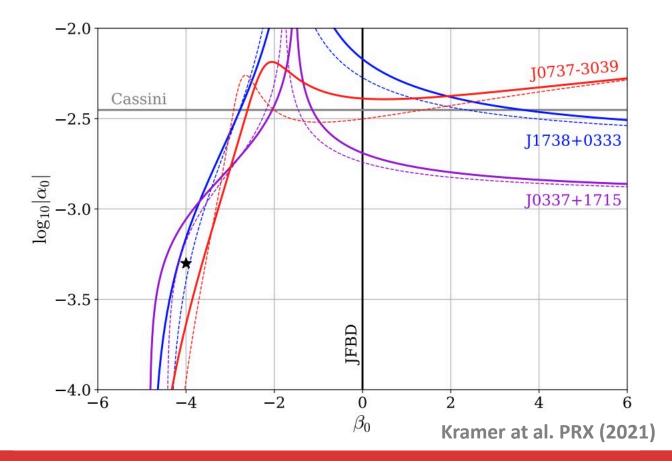


Daniela Doneva

Binary pulsar constraints – DEF model

• Scalarization window closed for the original DEF model zhao et al. CCQ (2022)

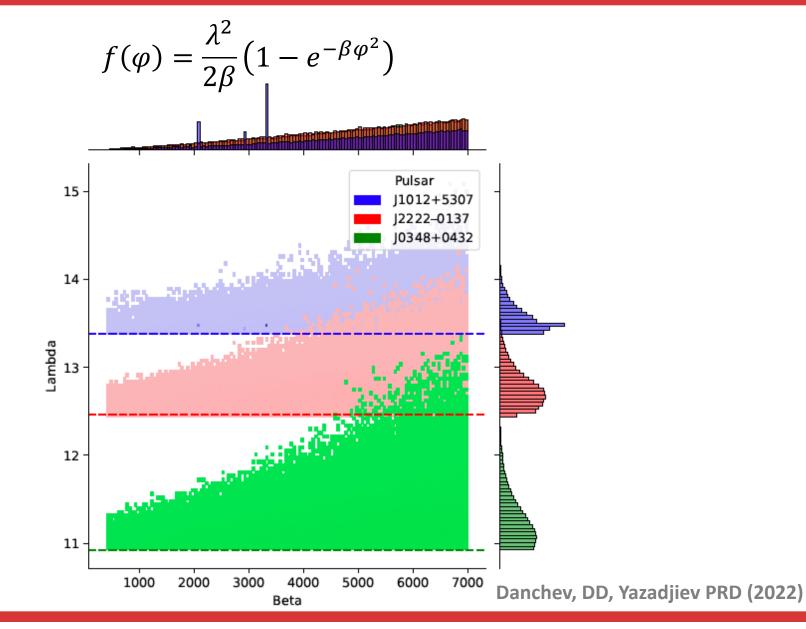
$$S = \frac{1}{16\pi G_*} \int d^4 x \sqrt{g} \left[R - 2g^{\mu\nu} \partial_\mu \varphi \partial_\varphi \varphi \right] + S_m [\psi_m, A^2(\varphi)g_{\mu\nu}]$$
$$\alpha(\varphi) = d \ln A(\varphi) / d\varphi = \alpha_0 + \beta_0 \varphi$$



Daniela Doneva

5th May, Lisbon

Binary pulsar constraints – Gauss-Bonnet gravity



Daniela Doneva

Evading binary pulsar constraints

• A way out:

✓ massive scalar field, e.g.
$$V(\varphi) = \frac{1}{2}m_{\varphi}^{2}\varphi^{2} + \lambda\varphi^{4}$$

Ramazanoglu, Pretorius (2016), Yazadjiev, DD(2016), Rosca-Mead et al. (2020)

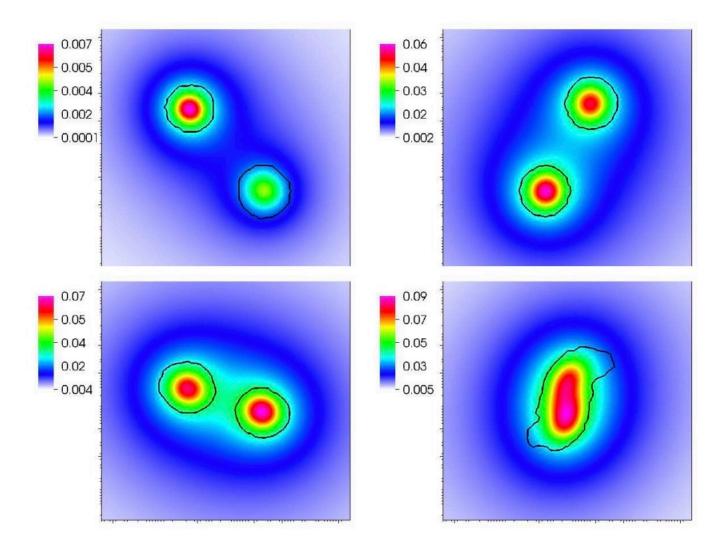
✓ $\varphi|_{r\to\infty} \sim 1/r^2$ (e.g. tensor-multi scalar theories)

✓ rapid rotation

✓ etc.

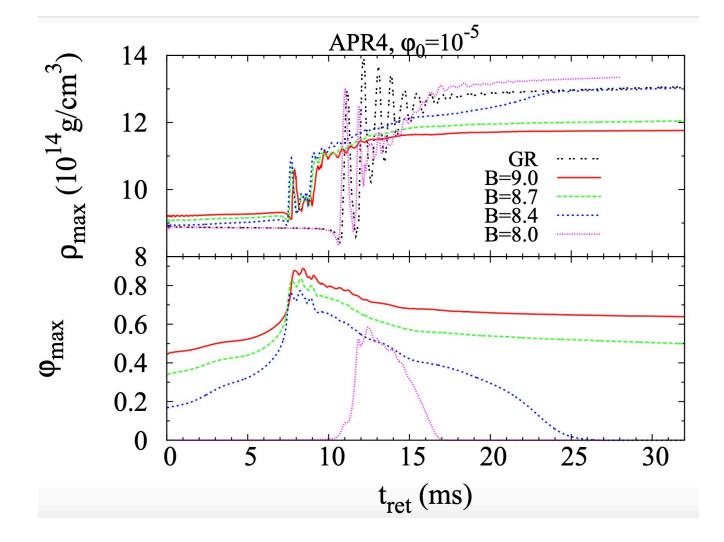
Binary mergers

Dynamical scalarization – DEF model



Barausse at al. PRD (2012)

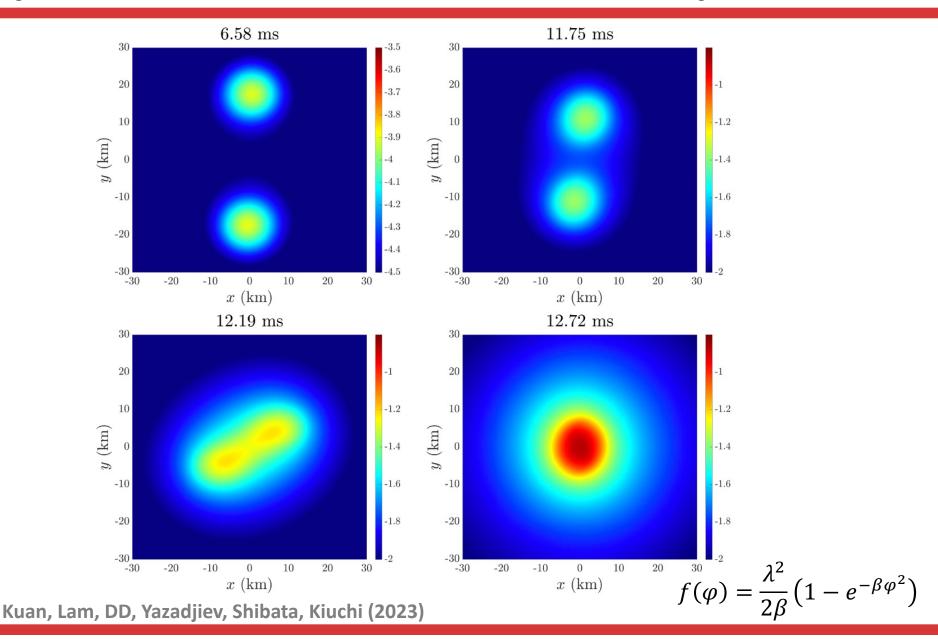
Daniela Doneva



Shibata et al. PRD (2013)

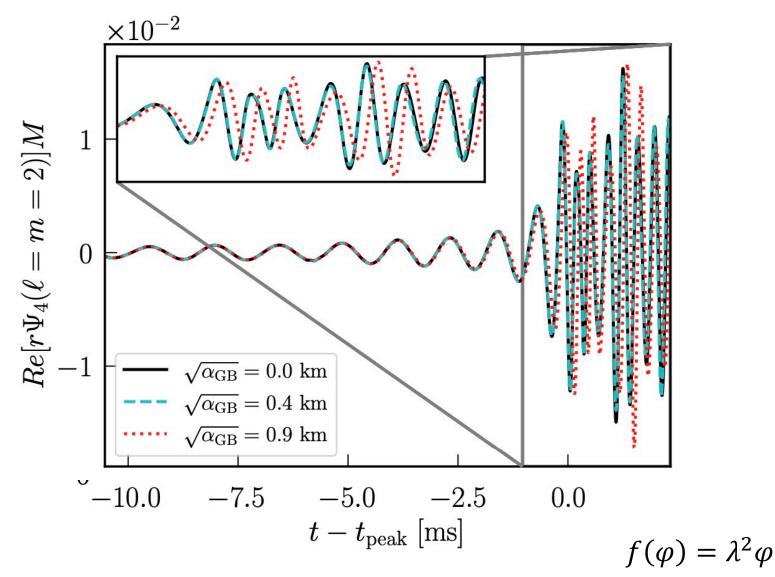
Daniela Doneva

Dynamical scalarization – Gauss-Bonnet theory



Daniela Doneva

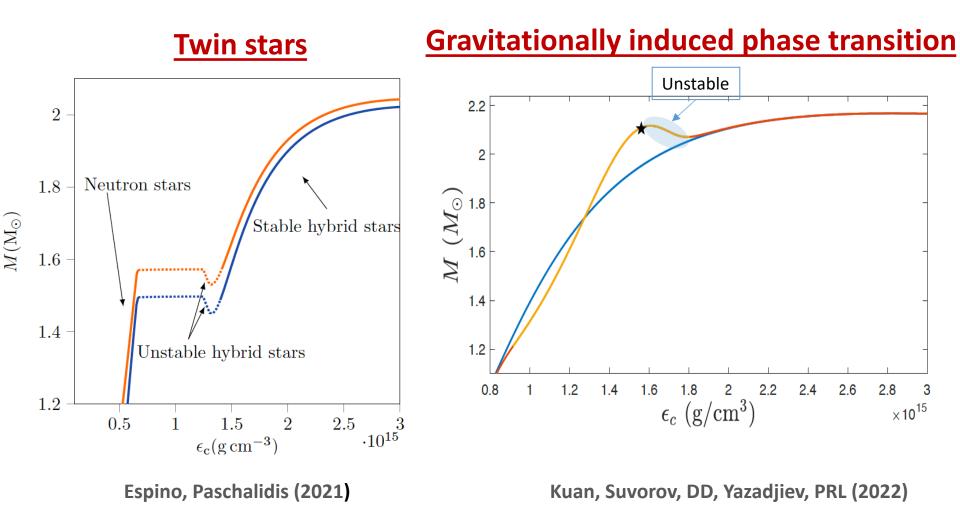
Shift symmetric Gauss-Bonnet theory – full theory evolution



East, Pretorius PRD (2022)

Daniela Doneva

Qualitative changes: Gravitational phase transitions



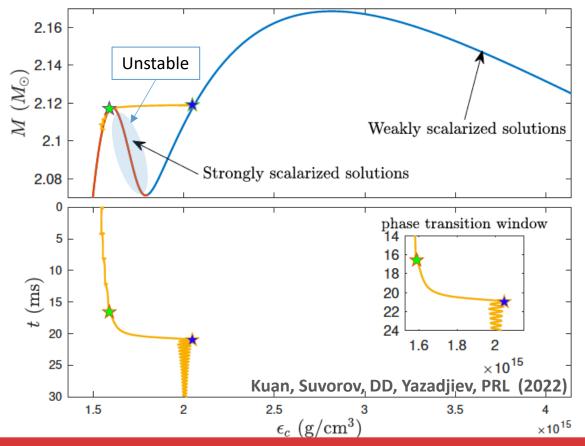
Daniela Doneva

Gravitational phase transition

• DEF model with a massive scalar field

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{g} \left[R - 2g^{\mu\nu} \partial_\mu \varphi \partial_\varphi \varphi - 4V(\varphi) \right] + S_m [\psi_m, A^2(\varphi)g_{\mu\nu}]$$

• $V(\varphi) \neq 0$ in order to **avoid binary pulsar constraints zhao et al. (2022)**

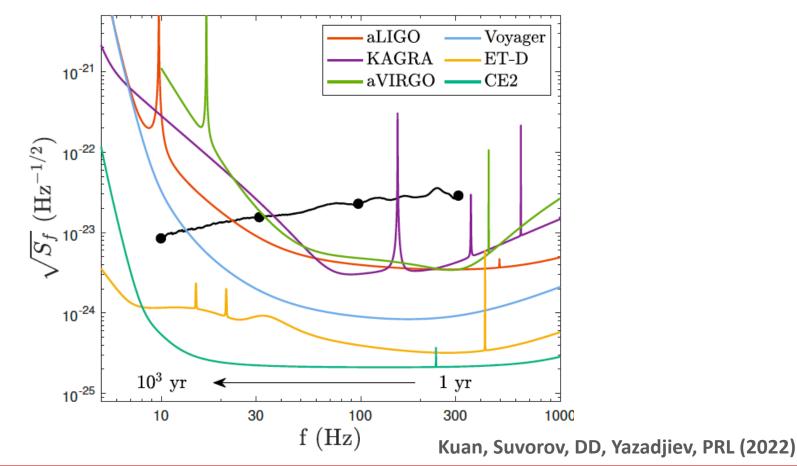


Daniela Doneva

5th May, Lisbon

Effective power-spectral density

- Spherically symmetric perturbations ⇒ emission of breathing modes
- Observational period 2 months, distance 10kpc



Daniela Doneva

- Neutron stars are ideal laboratories to test modified gravity with a plethora of observations
- Matter uncertainties hinder our abilities BUT it is easier to deviate from GR compared to black holes
- Some of the **best GR constraints** come from **neutron star** observations
- Even though there is a plethora of equilibrium models there are **very** few rotating ones and dynamics is highly unexplored.

THANK YOU!