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Electron clouds

e is emitted Secondary Electron Emission can drive an avalanche multiplication
(photoelectric effect) effect filling the beam chamber with an electron cloud

\ Beam chamber

Proton bunch . Secondary Electron Emission 1)(G. ladarola et al, 2018, ‘Electron Cloud Effects’)
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1. Electrons are introduced into the beam chamber
(residual gas ionization / synchr. rad. + photoelectric effect)
2. Electrons are accelerated by passing bunches and impact on beam chamber.
* Depending on energy of electron and Secondary Emission Yield of

surface, electrons can be emitted. , ScY Curves for different surfaces
If conditions allow, electrons multiply °
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Electron clouds
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Electrons multiply until a saturation is reached.
Number of electrons quickly decays when bunches are not passing.

Magnetic fields strongly affect the e-cloud.
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Electron cloud effects

The electron flux to the wall is responsible for
* Dynamic pressure rise

* Heat deposition

* Spurious signal for beam instrumentation

The electron density inside the chamber causes:

* Tune shift along the bunch train

e Synchronous phase shift along bunch train.

* Coherent beam instabilities (single and coupled
bunch)

* Incoherent effects (beam lifetime degradation
and slow emittance growth)

[G. Rumolo]



Electron cloud pinch

Incoherent electron cloud effects concern the motion of single particles under
the influence of the non-linear forces induced by the electrons.
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*  Motion of electrons is very complex — Complex electron densities —
complex induced forces.
* Protons from the beam are “moving” within these complex forces due to:
* Betatron oscillations: up-down, left-right
* Synchrotron oscillations: back-forth in “time”
— Increase of proton oscillation amplitude — losses + emittance growth.
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LHC observations during a typical fill
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Losses come from:

* Luminosity burn-off that decreases gradually.
* Continuous rate of additional losses.

Luminosity (ATLAS + CMS)
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Filling scheme
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Standard 2018 Physics filling scheme (2556 bunches) [Ipc.web.cern.ch]

Magniﬁcation'
200ns / 800ns

R

Beam is composed of repeating
patterns (trains):

2x48 bunches,

3x48 bunches.
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All bunch-by-bunch losses
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Global picture: Fairly constant loss rate (Corrected for burn-off).
e Grows from head to tail of each train
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Number of BBLR interactions

The only other non-linearities that depend on the bunch position are the
Beam-Beam Long-Range (BBLR) interactions.
Number of long-range encounters changes for each bunch in the filling scheme.

3x48 bunches
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* Group 1: Few BBLR, reduced e-cloud effects
* Group 2: Max BBLR, reduced e-cloud effects
*  Group 3: Max BBLR, stronger e-cloud effects
* Group 4: Few BBLR, stronger e-cloud effects

12



Example #1: Physics fills
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Bunch-by-bunch pattern emerges
Consistent with e-cloud buildup
behaviour.

Beam-beam effects alone cannot
explain behaviour
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Example #2: Crossing angle

Typical physics fill:
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* Areduced crossing angle typically enhances BBLR interactions.
 In this case, it enhances the e-cloud pattern losses.
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Example #3: Buildup simulations
in Inner Triplet quadrupoles

One beam: Two beams:
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One beam: In the small 200 ns between batches, the electron cloud
decays significantly.

Two beams: Beams are not synchronized and the e-cloud does not
decay.
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Example #3: Buildup simulations
in Inner Triplet quadrupoles

One beam: Two beams:
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The bunch-by-bunch pattern of the losses resembles the e-cloud buildup
simulations of the Inner Triplet quadrupoles.



Example #4: Measurements with
different betatron functions

B* =65 cm, ¢ = 120 urad B* =30 cm, ¢ = 150 urad
Large ATS telescope! — Moderate ATS telescope
— enhancement of arc beta functions
6 6
—— Burn-off —— Burn-off
a —— Other a —— Other

N

Loss rate [%/h]
N

Loss rate [%/h]

o

o
|

600 700 800 900 1000
Bunch slots [25 ns]

800 900 1000 1100 1200
Bunch slots [25 ns]

Decreasing [3 in the inner triplet quadrupoles should reduce effect
of the e-cloud in the inner triplet.

Increasing 3 in arcs should enhances e-cloud effect:
no significant losses.

'For more details, see S. Fartoukh: https://indico.cern.ch/event/772189/contributions/3209049/
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https://indico.cern.ch/event/772189/contributions/3209049/

Summary - Observations

Electron cloud related losses are enhanced when:

1. reducing B* (increasing B3 in IT)

2. reducing crossing angle (changes closed orbit in IT)
3. Two beams are present (enhanced buildup in IT)
but not when:

4. Increasing B in arcs
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All observations point to the Inner Triplet Quadrupoles.
Good news: HL-LHC Inner Triplet will have a-C coating to suppress e-cloud.
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Introduction to simulations
[G. Tadarola, CERN-ACC-NOTE-2019-0033]

s X, Y, T—X,y, T
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0
p— ¢ — 82 e

Complex time-dependent e-cloud density — complex time-dependent forces
Slow incoherent effects — e-cloud can be re-used = weak-strong
approximaton (no self-consistency)

But: e-cloud potential (PIC) is defined on a 3D grid. Needs to be interpolated.
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https://cds.cern.ch/record/2684858/

Symplecticity

0 -
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* Numerical methods in solving y -,
Hamiltonian systems can break the i %
symplectic condition, making them W ®  non-symplectic
less accurate at long timescales. : ®  symplectic 3
(Millions of turns)

* Typically important to preserve .,
symplecticity, even at the expense 10 Tt e
of accuracy. S s 00 B Lo

e Interpolation scheme should guarantee symplecticity.
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Tricubic interpolation

Given a regular 3D grid of any function fik, we interpolate locally
in a way that the following quantities are continuous globally.

f of of of o0°f 0°f 0°*f
"0z’ Oy’ 0z’ 0xdy’ 0xdz’ Oydz

A Lekien and Marsden” proved that it is
. possible to meet this condition by using
a tricubic interpolation scheme.

3 3 3
s f(Xaya Z) — S:S:S: aiijiijk

i=0 j=0 k=0

The coefficients a;; change from cell to
cell but required quantities stay
continuous across the cells.

* Analytical derivatives for interaction.

“F. Lekien and J. Marsden, “Tricubic interpolation in three dimensions”. https://doi.org/10.1002/nm2.1296
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Small digression
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Demonstration of symplecticity violation/preservation

2

P D>
— + 2+ ¢(q1,q2) with ¢(q1,q2) = P2

Consider the Hamiltonian: | H = 5 5

These quantities are conserved: J; = (p1 — )2 + 4eTr 72,
(along with the Hamiltonian) po + \/J_1
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We can numerically solve the equations of motion with
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gy = g +p2- At grid and the two interpolation
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Demonstration of symplecticity violation/preservation

Non-symplectic method: Use (bi)linear interpolation on the derivatives
of ¢(q1,q2) =e? %,

Symplectic method: Use (bi)cubic interpolation on ¢(q1,¢q2) = e? %

—— Linear int.
—— Cubic int.
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The relative error on the integrals
of motion does not grow with a
symplectic method,

While it grows for non-symplectic
methods.



End of digression

26



Issue with PIC potential

One simulation

0
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PIC simulation suffers from macroparticle noise.
Can be reduced by averaging many simulations.

Averaging 4000 reveals the physical structures in the induced forces.
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Issue with cubic interpolator
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[zoom of left figure]

* Close look reveals irregularities from Tricubic interpolation.
» Inaccuracies are correlated with discontinuity of second derivative accross
cells.
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Refinement of potential

We found that we can treat our potential by:

1. Interpolate charge density on an auxilliary finer grid (by factor h).

2. Recalculate ¢ and derivatives in the finer grid. Ax
3. Store recalculated ¢ and derivatives on original grid. AXrefined = 7

Minimal expense on memory and speed (performed during pre-processing)
Proved analytically that error becomes:

3
ijk _ d°¢ Ax i .73
8xJ,reﬁned - _zﬁ (xia Yjs Tk)@+ O(h Ax )

10?2

® ' Discrete Points

Tricubic: Interp.
Refined

Complete mitigation of
the irregularities.

Ex [V/m]
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Quick recap

* Analytical form of e-cloud kick. XY, T = XY, T

e Used a high-order inFel.‘polation scheme (tri-cubic) p s p, — = qPL g¢ (x,y,7)
to preserve symplecticity everywhere in phase h ¢ 8;
Space. py'_>py quca (X y77-)

« Averaged multiple Particle-In-Cell e-cloud , ag
simulations to reduce macroparticle noise in the pr — Pr — % qP -3 —(x,y,7)
interpolated data. "

* Solved Poisson’s equation in a finer auxiliary grid
(done only once) to improve performance of the
interpolation scheme.

Next:

* Direct tracking simulation results of the incoherent effect of electron clouds in
the main dipole and quadrupole magnets of the LHC at injection energy.

* Interaction was implemented in SixTrackLib/XSuite software to use GPUs and
including the full lattice model of the LHC.

* SixTrackLib/XSuite simulates beam particles through each element of the lattice
using symplectic (non-linear) maps.
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Graphics Processing Units

Realistic e-cloud simulation studies were made possible only through access to
modern Graphics Processing Unit hardware.

10°

— CPU (1 core)
— GPU

N

Two orders of magnitude gained

in computation time compared to a
CPU.

N
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* Simulations are still very heavy. 10 ,
* Simulation using a V100 GPU takes: 10" 10’ 10" 10’ 10" 10" 10’
1 week / 20 000 particles / 10 M turns. bilimbsrel paricos

Following studies used several GPUs available from:
* CERN IT batch service

* INFN-CNAF in Bologna (through HL-LHC collaboration)
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General procedure for the simulation

Optics code (MAD-X) :

Put collimators to limit e-cloud Find e-cloud build-up input

interaction to a physical region (Intensity, beam size, grid size)

Electron cloudjcode (PYECLOUD)

Run "refinement” procedure Average many simulations
to minimize interpolation artifacts to reduce macroparticle noise

Examples:

* Dynamic aperture tune scan to optimize accelerator’s configuration.

* Dynamic aperture (SEY, bunch intensity): qualitative characterization of
e-cloud effect, tolerances/intensity reach.

* Frequency Map Analysis for insight on the mechanism.

* Long-term simulations for estimations of losses and emittance growth.
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E-cloud setup

E-cloud exists across the full length of the LHC beam pipe.
Different magnetic fields lead to completely different e-clouds.

Most significant contributors:
1. E-cloud in arc dipoles (MB) (66%)

2. E-cloud in arc quadrupoles (MQ) (7%)

We place one interaction for each three dipoles and each quadrupole.

— Bx[m]
200 I B B 3.0 — 5 im]
! ! : 25 — D,[m] ¢ Betatron and dispersion
| | |
1 1 1

150 functions stay the same

20 mmm MB
between each cell.

— e ————— -

/ l \!
E 100 ! 1 5E :
< S e Approximate SEY as
- i i E 1.0 un1form evelijher.e. Large
N NS N os fluctuations in reality.
« Effect from saturated
Q450 1500 1550 1600 00 e—cloud

s[m]

LHC FODO Cell
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E-cloud setup

* One MB e-cloud per half-cell
— 46 interactions per arc
— 368 interactions.

* One MQ e-cloud per half-cell
— 45 interactions per arc
—> 360 interactions.

Tracking time per e-cloud type
(~360 interactions) is about as
much as rest of the lattice

(11k tracking elements).

35



E-cloud setup
Nominal 1ntens1ty (1.2 10" p/bunch) Reduced intensity (0.6 10!! p/bunch)
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Dipoles: Reduced bunch intensity leads to larger e- density close to the beam.
Quadrupoles: Small dependence on bunch intensity, large e densities close to beam.
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E-cloud setup

Nominal intensity (1.2 10!! p/bunch) Reduced intensity (0.6 10!! p/bunch)
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* Dipoles: Reduced bunch intensity leads to larger e~ density close to the beam.
* Quadrupoles: Small dependence on bunch intensity, large e~ densities close to beam.
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Simulation Parameters

Typical LHC at injection, 2018

Bunch intensity : 1.20 10!! protons
Energy : 450 GeV
Chromaticity : 15/15
Octupole magnet’s current : 40 A
Bunch spacing : 25 ns
Transverse norm emittances : 2 um/ 2 um
R.M.S. bunch length : 0.09 m

Betatron tunes : 62.270/60.295
RF voltage : 6 MV

The three primary collimators (TCP) in IR7 (as black absorbers) are included in
the lattice at their typical configuration (5.7 “collimation” ¢ — 7.5 beam o).

There is no uncorrected linear coupling, magnet field imperfections, magnet
misalignments or beam-beam interactions in the lattice.
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Dynamic Aperture [opeam]
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Frequency Map Analysis — Nominal intensity (1.2 10! p/b)
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Frequency Map Analysis — Reduced intensity (0.6 10! p/b)
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Reduced intensity
Dipoles (MB):

— larger tune-shift
— more resonances

Quadrupoles (MQ):
— large tune-shift
— more resonances

Reminder:

Significant e density appears on
the beam location in dipole
magnets for reduced intensity.

Particles are on-momentum.
Work in progress to try identify
synchro-betatron resonances.
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Long simulations (10M turns — 15min beam time)

1.20 - 10'! ppb, MB + MQ

=°| —+ Without e-cloud Incoherent effects in the LHC are
%2 Iz With e-cloud typically very slow processes. Need to
g W simulate long timescales.
K Recent advances (SixTrackLib/XSuite)
g cex 2] 0.00h & 0012 sens al.lov.v th? direc‘F simulation of parti.cle
T S — distributions with GPUs for such times.
T dex — 0.110 £ 0.018 pm/h
? 2.02
20 ‘ In long term simulations we observe:
95 _ 0,001 % 0,015 pm/h » small increase of losses
EZ'M 9% _0.100 % 0,010 ym/h * horizontal emittance growth,
=202 * vertical emittance growth,
’ 2o when e-clouds are included.

0 2 4 6 8 10 12 14 16
Time [min]

Experimental observations show emittance growth in the same order of magnitude.
For quantitative comparisons we have planned dedicated MDs in Run 3.
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Conclusion and Remarks

Observations:
e Electron cloud in the insertion region quadrupoles is significant. Reduces
integrated luminosity.

Simulations:

*  We can do particle tracking simulations with arbitrarily complex e-clouds in
arbitrarily complex lattices for millions of turns.

* Simulated simplified scenario at injection energy. Interplay with non-linear
magnetic imperfections expected.

e Simulations have reproduced the expected qualitative behavior.

* Very long simulation timescales (several minutes) are in reach. (Using GPUs)

Outlook for the future:

* Comparison with experimental measurements needs specialized tests.
- Soon to be carried out in the LHC.

* Simulate more complex scenario of collisions in LHC: Strong electron clouds
in the Insertion Region quadrupoles + beam-beam effects.

Thank you for your attention!
Konstantinos Paraschou 44
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Long simulations (10M turns — 15min beam time)

8 I No e—clolud . )
—— e-cloud in MB MB (DlpOleS).
< —— e-cloud in MB, MQ . .
Se - * Losses stronger at reduced intensity.
P * Emittance growth only at reduced
g intensity.
2 . .
* Vertical growth larger than horizontal.
0 04 05 06 07 08 09 10 11 1.2
hi i 11
o Bunch intensity [10-* p] MQ (Quadrupoles):
-cloud . -
0.5 e » Losses across all intensities.
_ 04 —F e-cloud in MB, MQ * Emittance growth at all intensities.
E 03 * Similar growths in both horizontal and
§}50.2 vertical.
0.1
0.0 ]
04 05 06 07 08 09 10 11 12 Effects strongly correlated with the e
Bunch intensity [10! p] .
0.6 o neey P density close to the beam.
[ No e-cloud
0.5 —}— e-cloud in MB
_ 04 —+- e-cloudin MB, MQ Reminder:
g 0.3 * MB show large densities around the
gk 0.2 beam for reduced intensities,
o1 * MQ for all intensities.
0.0

04 05 06 07 08 09 10 1.1 1.2 46
Bunch intensity [10!! p]



The RF bucket

x 102

10

1007 03 —02 —0.1 0.0 0.1 0.2 0.3 0.4

7 [m]

» DA simulations done for off-momentum particles (p, = 5.5 10-4).

* FMA simulations done for on-momentum particles (p, = 0).

* Long-term tracking simulations with particles across the full bucket.
*  Work in progress: FMA with off-momentum particles.
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Impact of tricubic interpolation irregularities

Simple tracking of linear 2D phase
space rotation and an e-cloud
symplectic kick.

Very important to minimize
irregularities.

By reducing them, there is
significant impact on the particle
motion.

h (et v i | ® Discrete Points
LN Tt
I (i
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Induced forces

y [mm]
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Quadrupole magnet:
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