LHC bunch charge limitation from beam induced RF heating

Mike Barnes (SY-ABT), Giuseppe Bregliozzi, Josef Sestak (TE-VSC), Benoit Salvant (BE-ABP)

Many thanks to all equipment groups!

Thanks in particular to Lotta Mether, Carlo Zannini, Giovanni Rumolo, Gianni Iadarola, Francois-Xavier Nuiry, Marko Milovanovic, Roderik Bruce, Vasileios Vlachodimitropoulos, Oskar Bjorkqvist and the IWG.

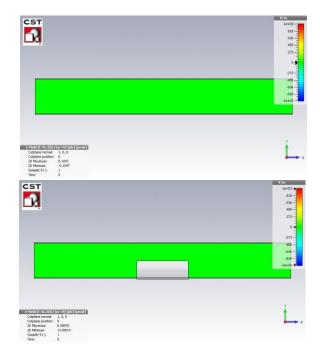
Joint Accelerator Performance Workshop

December 6th 2022

1

Agenda

- Beam induced RF heating
- Status before LS2
- Status in 2022
- Plans for 2023
- Conclusion

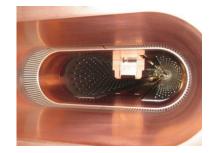

Beam induced RF heating?

- When the LHC beam traverses a device which
 - is not smooth
 - or is not a perfect conductor,

it will produce wakefields that will perturb the following particles

 \rightarrow resistive or geometric wakefields (in time domain) and impedance (in frequency domain).

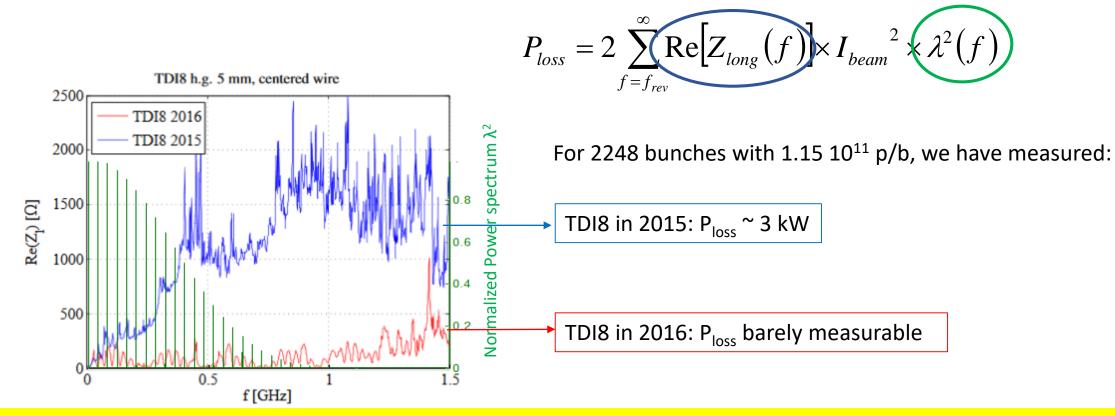
• Example of 3D simulation of electromagnetic perturbation caused by an obstacle beam pipe:



In a round beam pipe

In a round beam pipe with sharp obstacle

- \rightarrow resonant RF mode
- ightarrow energy left behind by the bunch
- \rightarrow eventually dissipates in the surrounding walls


 \rightarrow Energy lost by the bunch will eventually heat up the surrounding walls

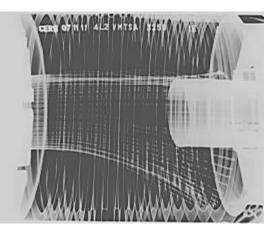
Beam induced RF heating?

 \rightarrow Can be computed from the impedance of the device and the beam power spectrum

Power lost by a beam of intensity $I_{beam} = M^* N_b^* e^* f_{rev}$ and normalized power spectrum λ^2 in a device of longitudinal impedance Z_{long}

In order to reduce beam induced RF heating, one can:

- reduce the impedance of the device (as done on TDI8 in 2016)
- reduce the intensity of the beam


- change the power spectrum to reduce its interaction with the device impedance (change bunch length, bunch distribution and filling pattern)

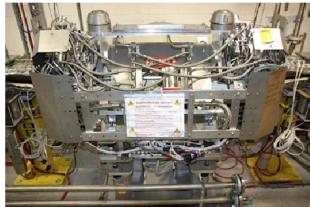
Agenda

- Beam induced RF heating
- Status before LS2
- Status in 2022
- Plans for 2023
- Conclusion

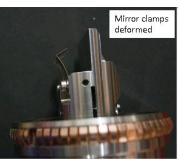
Reminder: heating issues since LHC startup

Damaged vacuum modules → Design not robust

One injection kicker delays injection → Non conformity



Damaged injection collimators → Design not robust



2 collimators reached temperature interlock dump levels

- → Cooling non conformity
- \rightarrow Spurious temperature readings

Damaged synchrotron light monitor \rightarrow Design not robust



ATLAS-ALFA detector almost reached damage level → Design not robust

One single cryogenic module (Q6R5) has no margin for cooling, likely linked to TOTEM outgassing. → TOTEM ferrite not baked

→ Many actions taken by all involved equipment groups (especially during LS1 and 2015-2016 YETS)!

Beam induced heating status before LS2

equipment	Problem	2011	2012	2015	2016	2017 and 2018
Vacuum modules	Damage		VMTSA removed		Spring on VMSI gone	Spring on VMSI gone again
TDI	Damage	Beam screen bent	Beam screen bent	non-conformity with hBN material	vacuum behavior with 55mm gap, could be e-cloud related	
МКІ	Wait for injection or reduce intensity			Beam screen upgrade and non conformity solved		
Collimators	Few dumps			Non conformity solved. TCTVB removed		
TOTEM	Beam screen regulation at the limit	Q6R5 affected by TOTEM	Q6R5 affected by TOTEM	Upgrade of the valves + TOTEM check		
Roman pots (ALFA and AFP)	Risk of damage and outgassing	ATLAS-ALFA close to limit	ATLAS-ALFA close to limit	New design for ATLAS-ALFA + cooling		
BSRT	Deformation suspected		Mirror damage	New design + cooling		
BGI	vacuum increase			To be followed up	BGI heats up and damaged	BGIs removed

 \rightarrow Some topics to follow up, but no limitation anymore

Damage

Limits operation

Worry that can limit operation

7

Should be fine

Agenda

- Beam induced RF heating
- Status before LS2
- Status in 2022
 - What has changed
 - MKI
 - Vacuum spikes in TCLDs, LHCb Velo, 5R4
- Plans for 2023
- Conclusion

What has changed after LS2

- Steady increase of intensity per bunch from 1.15-1.2 10¹¹ p/b to ~1.45-1.5 10¹¹ p/b
 - \rightarrow Beam induced heating increased by ~50% compared to Run 2
 - \rightarrow Another ~50% increase expected to reach 1.8 10¹¹ p/b
- Relevant equipment installed during LS2
 - Low impedance collimators
 - TDIS
 - LHCb Velo upgrade
 - TCLD
 - New experimental chambers

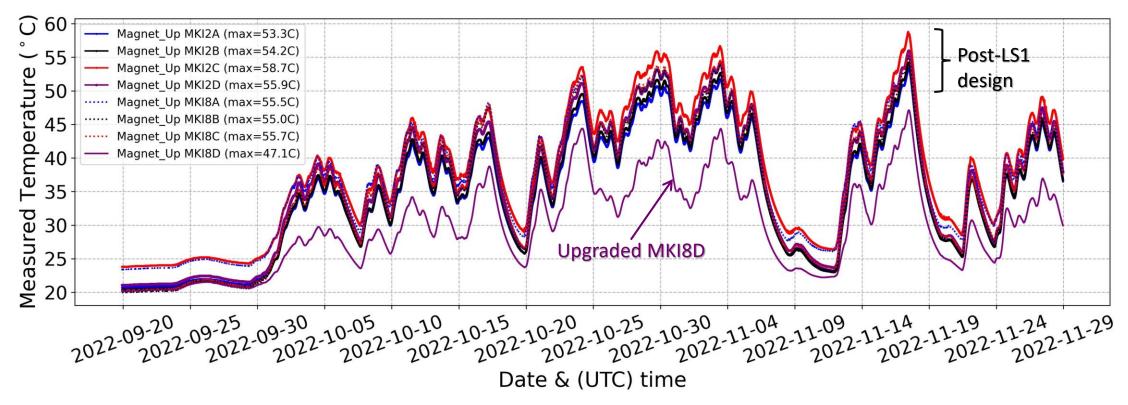
Beam induced heating status at the end of 2022

equipment	Problem	2011	2012	2015	2016	2017 and 2018	2022
Vacuum modules	Damage		VMTSA removed		Spring on VMSI gone	Spring on VMSI gone again	Need to check vacuum spikes in 5R4
TDIS	Damage	Beam screen bent	Beam screen bent	non-conformity with hBN material	vacuum behavior with 55mm gap, could be e-cloud related		
МКІ	Wait for injection or reduce intensity			Beam screen upgrade and non conformity solved			Temperature interlocks increased with experience
Collimators	Few dumps			Non conformity solved. TCTVB removed			Need to check TCLD vacuum spikes
TOTEM	Beam screen regulation at the limit	Q6R5 affected by TOTEM	Q6R5 affected by TOTEM	Upgrade of the valves + TOTEM check		Some sectors heating more	
Roman pots (ALFA and AFP)	Risk of damage and outgassing	ATLAS-ALFA close to limit	ATLAS-ALFA close to limit	New design for ATLAS-ALFA + cooling			AFP pots are getting close to 50 C
BSRT	Deformation suspected		Mirror damage	New design + cooling			
BGI	Vacuum increase			To be followed up	BGI heats up and damaged	BGIs removed	
LHCb Velo	Vacuum spikes						Need to check vacuum spikes

→ Some topics to follow up, but still no limitation despite the significant increase in bunch intensity

Damage

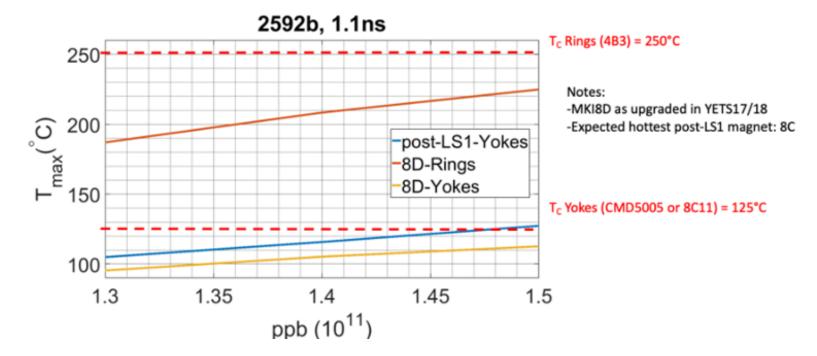
Limits operation


Worry that can limit operation

No limitation during operation

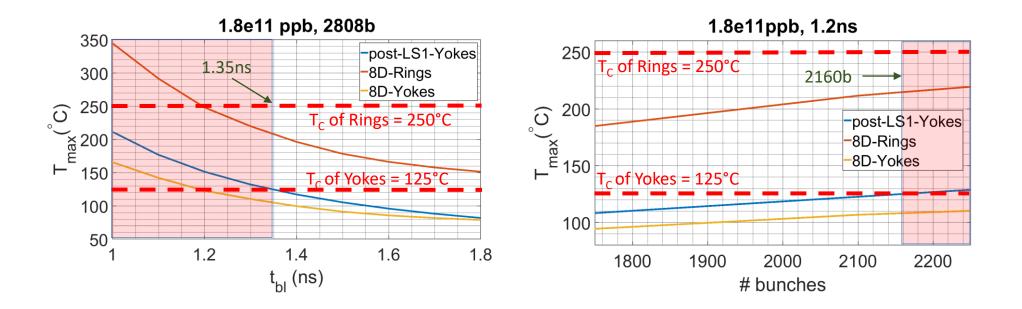
Agenda

- Beam induced RF heating
- Status before LS2
- Status in 2022
 - What has changed
 - MKI
 - Vacuum spikes in TCLDs, LHCb Velo, 5R4
- Plans for 2023
- Conclusion


MKI temperature

- Measured temperatures increase as expected with higher intensity and long fills
- Procedures followed, with fast turn-around, to increase SIS interlock thresholds as necessary.
- MKI8D (installed YETS 2017/18) included an upgrade to relocate a significant portion of beam induced power from the yoke to the '**RF damper**': this element is not at pulsed high voltage.
 - \rightarrow Lower yoke temperature for MKI8D
 - \rightarrow effectiveness of the upgrades demonstrated during LHC operation.

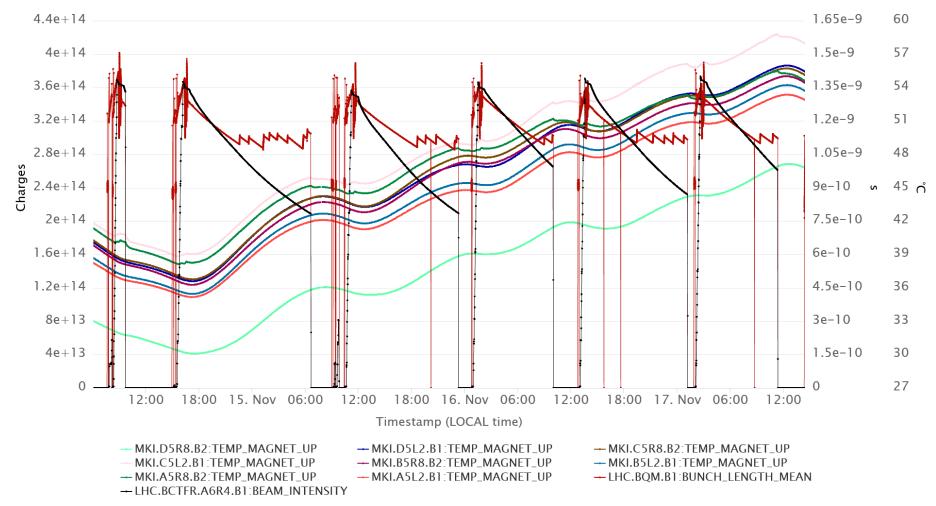
MKI temperature: simulations


- Talk of Francesco Velotti at Evian 2019 and Mike Barnes at Chamonix 2022
- Recall of steady state thermal simulations for currently installed MKIs

 \rightarrow We are now very close to the limit for steady state heat load

MKI temperature: simulations

- Talk of Francesco Velotti at Evian 2019 and Mike Barnes at Chamonix 2022
- Recall of steady state thermal simulations for currently installed MKIs

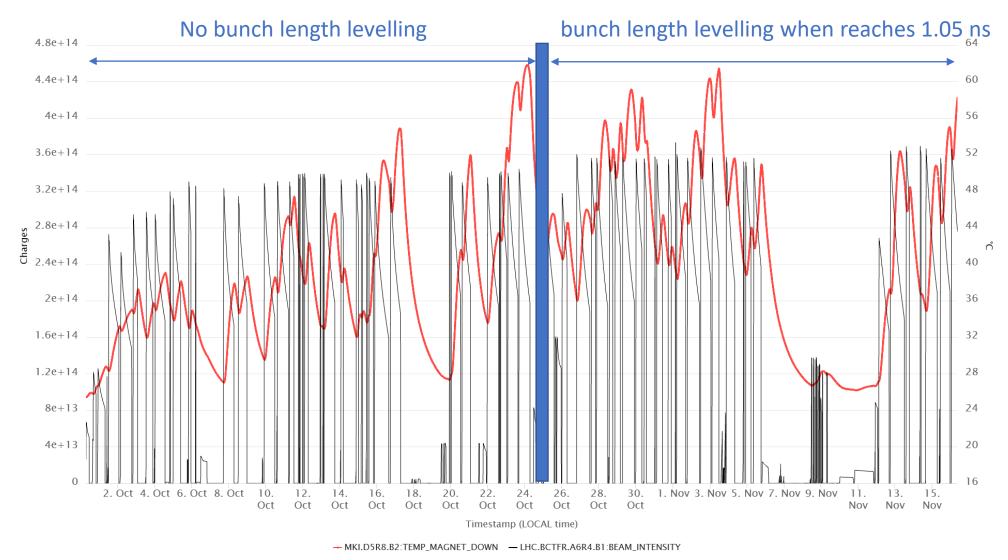


 \rightarrow Limit expected with 2808 bunches and 1.8 10¹¹ p/b at 1.35 ns for steady state heat load

 \rightarrow Increasing bunch length will help

MKI temperature

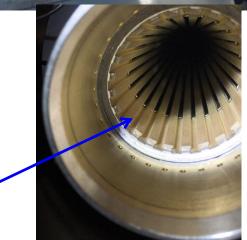
 \rightarrow Limit expected with 2808 bunches and 1.8 10¹¹ p/b at 1.35 ns for steady state heat load



→ Limit not reached yet for MKI8D or post-LS1 MKIs with series of consecutive fills with 2462 bunches at 1.45 10¹¹ p/b levelled at ~1.1 ns (mid November)

06/12/2022

MKI temperature


• Bunch length leveling has been efficient at limiting heating of MKIs (around 1.1 ns)

MKI temperature outlook for 2023

- MKI-COOL will replace MKI8D in YETS 2022/23
 - MKI8D is the coolest installed kicker... but...
 - ... issues with quality of produced alumina tubes
 - ... need to recuperate the alumina tube of MKI8D for installation of another MKI-COOL in the YETS 2023/24
- No significant difference expected from BCMS/8b4e/mixed schemes (see next slides)
- Increasing bunch length target would help in case we reach the limit in physics before 1.8 10¹¹ p/b

Joint Accelerator Performance Workshop - Beam induced RF heating

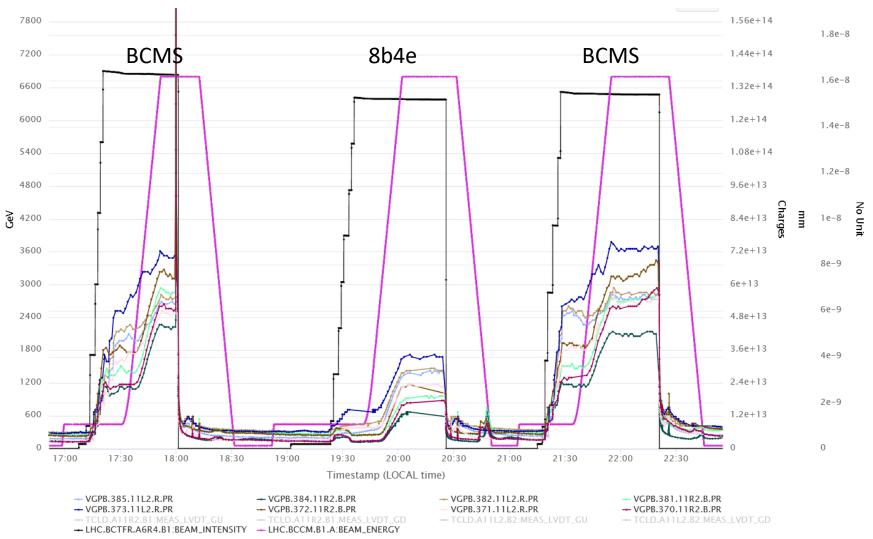
Cr₂O₃ coated alumina

Agenda

- Beam induced RF heating
- Status before LS2
- Status in 2022
 - What has changed
 - MKI
 - Vacuum spikes in TCLDs, LHCb Velo, 5R4
- Plans for 2023
- Conclusion

Vacuum spikes observed during the run:

• TCLDs


- Vacuum spikes observed on both 11R2 and 11L2 throughout the year (randomly in the fill) (largest during the scrubbing run in June)
- No correlation to movement of collimator, but some correlation observed with losses
- Xrays were performed during the LHC stop in Summer, will be redone on 11R2 during the YETS to investigates shadows seen on the Xrays

• 5R4

- Vacuum spikes observed at almost every fill during injection or the first part of the ramp, one dump at flat top during high intensity BCMS MD.
- Xrays will be performed on vacuum modules to check status of RF fingers (Dec 8th)
- LHCb Velo
 - Vacuum spikes observed when moving the Velo IN and OUT during stable beams
 - Temperatures increase measured on the SMOG side with beam
 - Visual inspection will be performed on the wakefield suppressor side during the YETS

Vacuum spikes near TCLDs

→ Dynamic pressure significantly better with 8b4e on both 11R2 and 11L2
 → Dynamic pressure rise most likely from electron cloud, which could favour vacuum spikes

Agenda

- Beam induced RF heating
- Status before LS2
- Status in 2022
- Expectations for 2023
- Conclusion

Changes for 2023

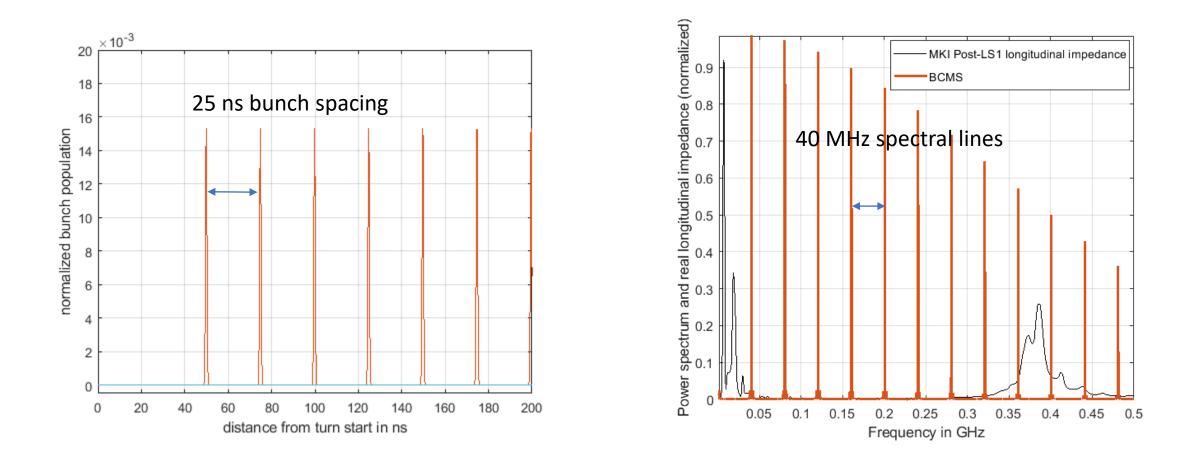
- Hardware
 - MKI-COOL should replace MKI8D
 - \rightarrow no significant impact on expected limitations
- Beams
 - Intensity increase

 \rightarrow ramp up to 1.8 10¹¹ p/b \rightarrow ~50% more heating than during 2022

- Various filling patterns envisaged:
 - BCMS
 - 8b4e
 - Mixed BCMS/8b4e

Expectations for 2023

Vacuum modules	Damage		VMTSA removed		Spring on VMSI gone	Spring on VMSI gone again	Need to check vacuum spikes in 5R4	Xrays planned
TDIS	Damage	Beam screen bent	Beam screen bent	non-conformity with hBN material	vacuum behavior with 55mm gap, could be e-cloud related			
МКІ	Wait for injection or reduce intensity			Beam screen upgrade and non conformity solved			Temperature interlocks increased with experience	Soft limitation Prevents injection
Collimators	Few dumps			Non conformity solved. TCTVB removed			Need to check TCLD vacuum spikes	
TOTEM	Beam screen regulation at the limit	Q6R5 affected by TOTEM	Q6R5 affected by TOTEM	Upgrade of the valves + TOTEM check		Some sectors heating more		
Roman pots (ALFA and AFP)	Risk of damage and outgassing	ATLAS-ALFA close to limit	ATLAS-ALFA close to limit	New design for ATLAS-ALFA + cooling			AFP pots are getting close to 50 C	
BSRT	Deformation suspected		Mirror damage	New design + cooling				
BGI	Vacuum increase			To be followed up	BGI heats up and damaged	BGIs removed		
LHCb Velo	Vacuum spikes						Need to check vacuum spikes	

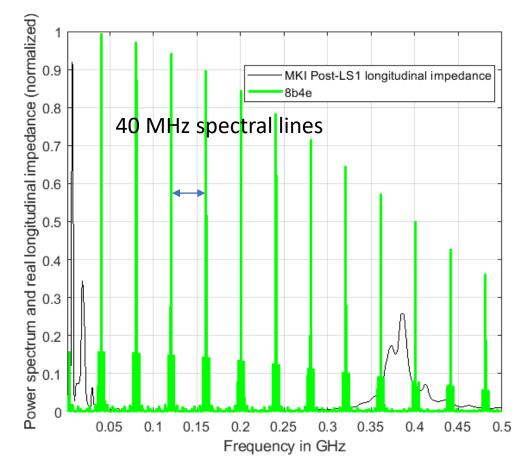

Limits operation

Worry that can limit operation

Expected to be fine

Impact of filling scheme: BCMS

- Changing the filling scheme can have a significant impact on the sidebands of the beam power spectrum
- 25 ns bunch spacing \rightarrow main spectral lines every 1/25 ns = 40 MHz

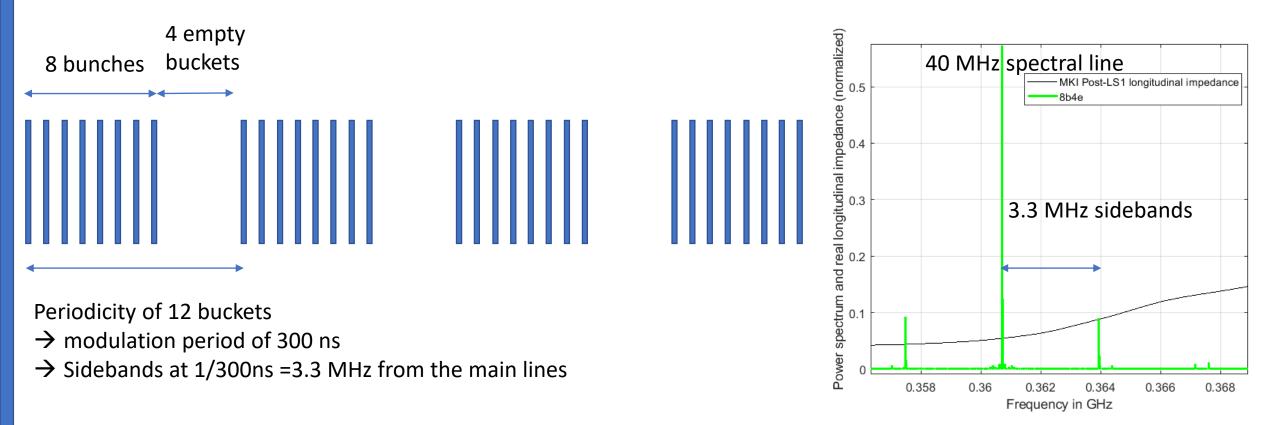


- Changing the filling scheme can have a significant impact on the sidebands of the beam power spectrum
- 25 ns bunch spacing

 \rightarrow main spectral lines every 1/25 ns = 40 MHz

Filling with 8b4e

 \rightarrow same spectral lines with major sidebands every 1/(12*25ns)=3.3 MHz



- Changing the filling scheme can have a significant impact on the sidebands of the beam power spectrum
- 25 ns bunch spacing

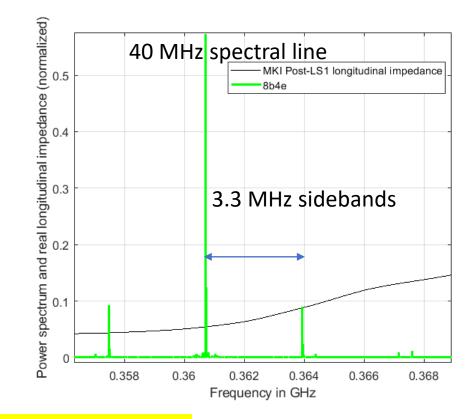
 \rightarrow main spectral lines every 1/25 ns = 40 MHz

• Filling with 8b4e

 \rightarrow same spectral lines with major sidebands every 1/(12*25ns)=3.3 MHz

- Changing the filling scheme can have a significant impact on the sidebands of the beam power spectrum
- 25 ns bunch spacing

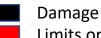
 \rightarrow main spectral lines every 1/25 ns = 40 MHz


• Filling with 8b4e

 \rightarrow same spectral lines with major sidebands every 1/(12*25ns)=3.3 MHz

$$P_{loss} = 2 \sum_{f=f_{rev}}^{\infty} \operatorname{Re}\left[Z_{long}(f)\right] \times I_{beam}^{2} \times \lambda^{2}(f)$$

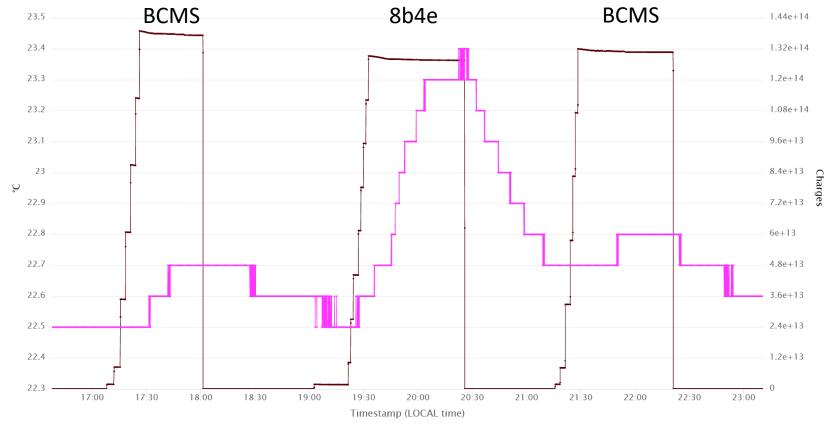
Power loss is an infinite sum over frequency,


- → impact of sidebands is small for impedances that are varying slowly with frequency (broadband impedance)
- → Impact of sidebands can be very large for peaked impedances (narrow band impedance)

→ Moving to 8b4e can excite narrow band resonances that are not excited by the BCMS beam

Vacuum modules	Damage		VMTSA removed		Spring on VMSI gone	Spring on VMSI gone again	Need to check vacuum spikes in 5R4	Narrow band
TDIS	Damage	Beam screen bent	Beam screen bent	non-conformity with hBN material	vacuum behavior with 55mm gap, could be e-cloud related			Narrow band And broadband
ΜΚΙ	Wait for injection or reduce intensity			Beam screen upgrade and non conformity solved			Temperature interlocks increased with experience	broadband
Collimators	Few dumps			Non conformity solved. TCTVB removed			Need to check TCLD vacuum spikes	Narrow band and broadband
TOTEM	Beam screen regulation at the limit	Q6R5 affected by TOTEM	Q6R5 affected by TOTEM	Upgrade of the valves + TOTEM check		Some sectors heating more		Broadband
Roman pots (ALFA and AFP)	Risk of damage and outgassing	ATLAS-ALFA close to limit	ATLAS-ALFA close to limit	New design for ATLAS-ALFA + cooling			AFP pots are getting close to 50 C	Broadband
BSRT	Deformation suspected		Mirror damage	New design + cooling				Broadband
BGI	Vacuum increase			To be followed up	BGI heats up and damaged	BGIs removed		Narrow band
LHCb Velo	Vacuum spikes						Need to check vacuum spikes	Narrow band

→ Moving to 8b4e can excite resonances that are not excited by the BCMS beam
 → We will have to monitor closely the temperature and vacuum signals during the ramp up

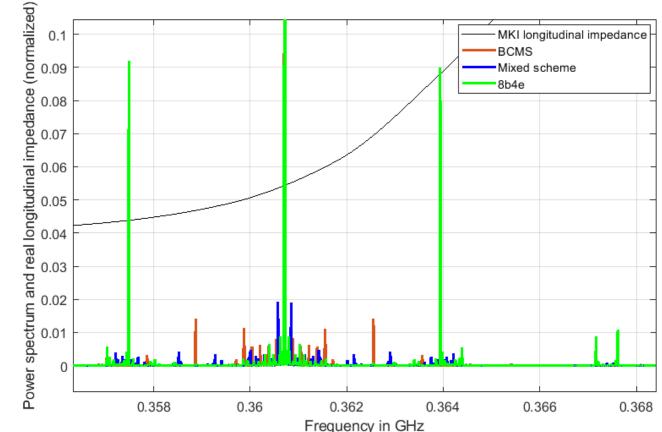


Limits operation

Worry that can limit operation

Example of BGV with 8b4e

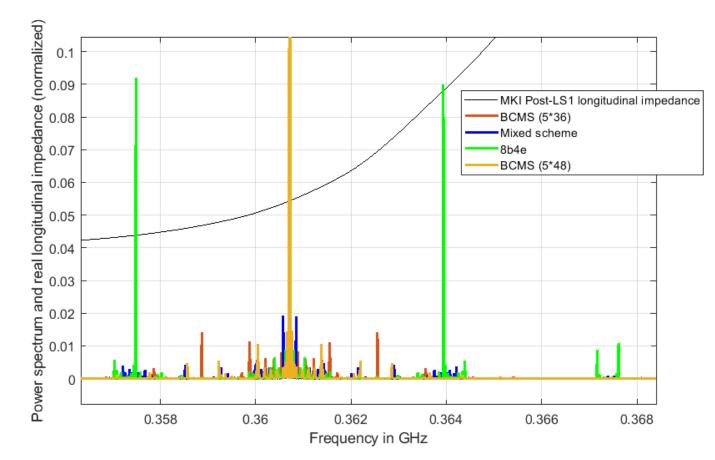
- For most of the machine, moving from BCMS to 8b4e during the high intensity MD reduced significantly the dynamic pressure rise
- ... for everyone except the BGV
- It is known BGV is full of resonant modes, and it will be replaced by LS3
- No other issue identified
- Warning: the Velo was not moved IN during the MD



⁺ LHC.BCTFR.A6R4.B2:BEAM_INTENSITY + BGVDEMO.THMS.B2:Acquisition:TempGas3

Impact of filling scheme

• 8b4e/BCMS mixed scheme breaks the modulation pattern


→ much smaller sidebands, of the same order than existing sidebands of the BCMS scheme

Impact of filling scheme

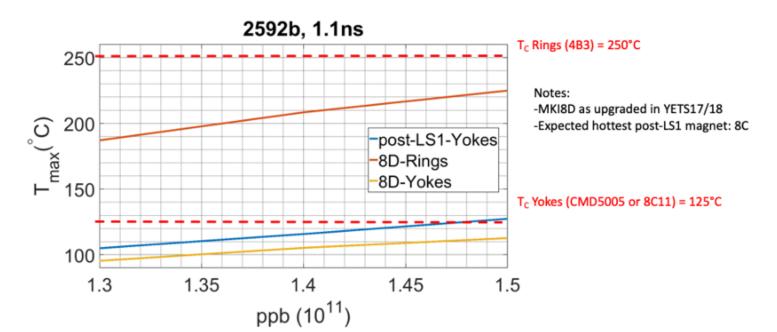
• 8b4e/BCMS mixed scheme breaks the modulation pattern

→ much smaller sidebands, of the same order than existing sidebands of the BCMS scheme (with 36 and 48 bunches)

Agenda

- Beam induced RF heating
- Status before LS2
- Status in 2022
- Expectations for 2023
- Conclusion

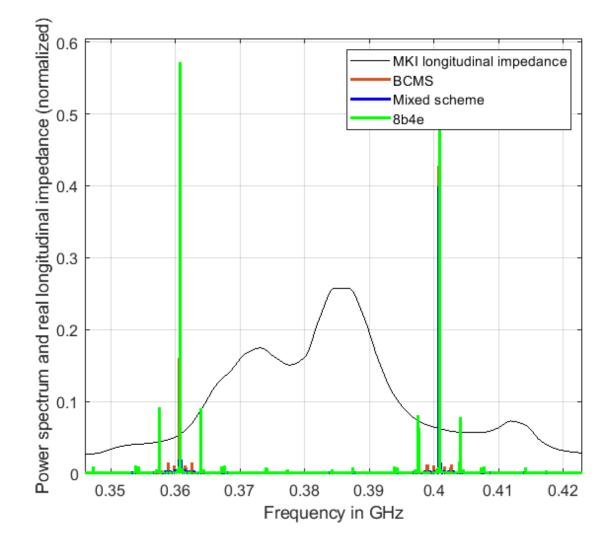
Outlook

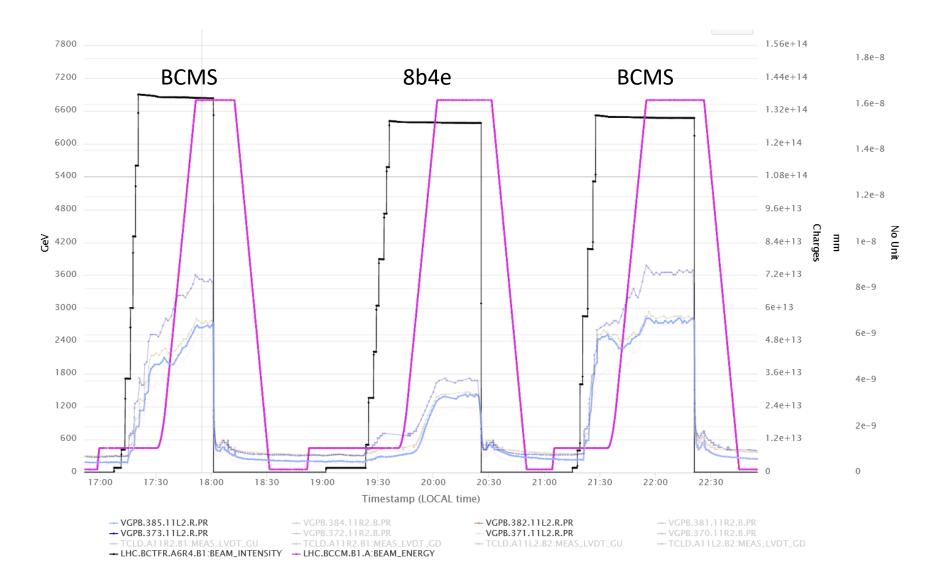

• 2022:

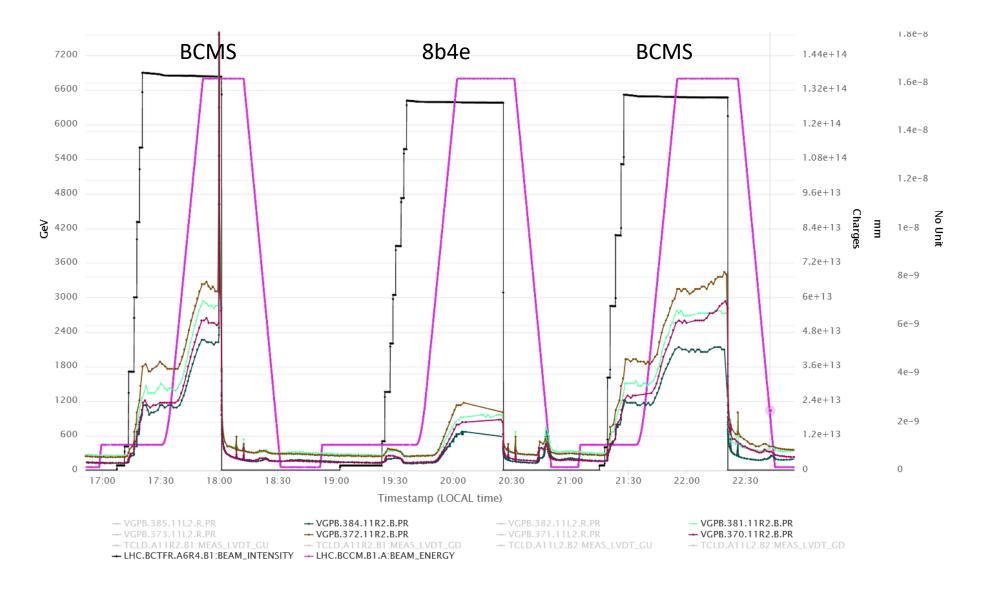
- So far so good!
- LHCb VELO and RF fingers will be checked in some locations during the YETS (5R4, TCLDs)
- 2023:
 - 50% more heating with 1.8 10^{11} p/b
 - Will need to continue monitoring
 - MKI temperature may become a limitation, and may require waiting for injection
 - Continue what worked well:
 - Intensity ramp-up checklists
 - Bunch length leveling
 - New Timber performance ramp up
 - Possible improvements:
 - Get the beam spectrum measurement and logging back as before LS2
 - See if target bunch length for leveling can be increased
 - See (again) if interlocks on unreliable temperature measurements are really worth the risk of dumps

Thank you very much for your attention

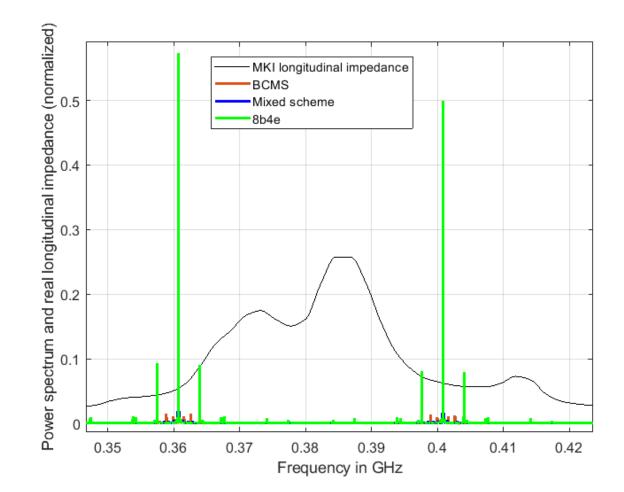
Limitations from injection devices post-LS2


- → Limit to LIU/HL-LHC baseline parameters for transported/injected beam from the SPS to the LHC
- → MKI limits for injected beam:
 - → Up to 7.8 us pulse length operated so far OK for 240 bunches per train (8.2 us might be in reach, if needed, but to be evaluated in MD first)
- → MKI limits to max number of storable bunches given by post-LS1 magnets installed
 - → Details in: V. Vlachodimitropoulos, "Hardware limitations at injection" (<u>https://indico.cern.ch/event/663598/</u>) and "Update on MKI impedance studies" (<u>https://indico.cern.ch/event/734086/</u>)

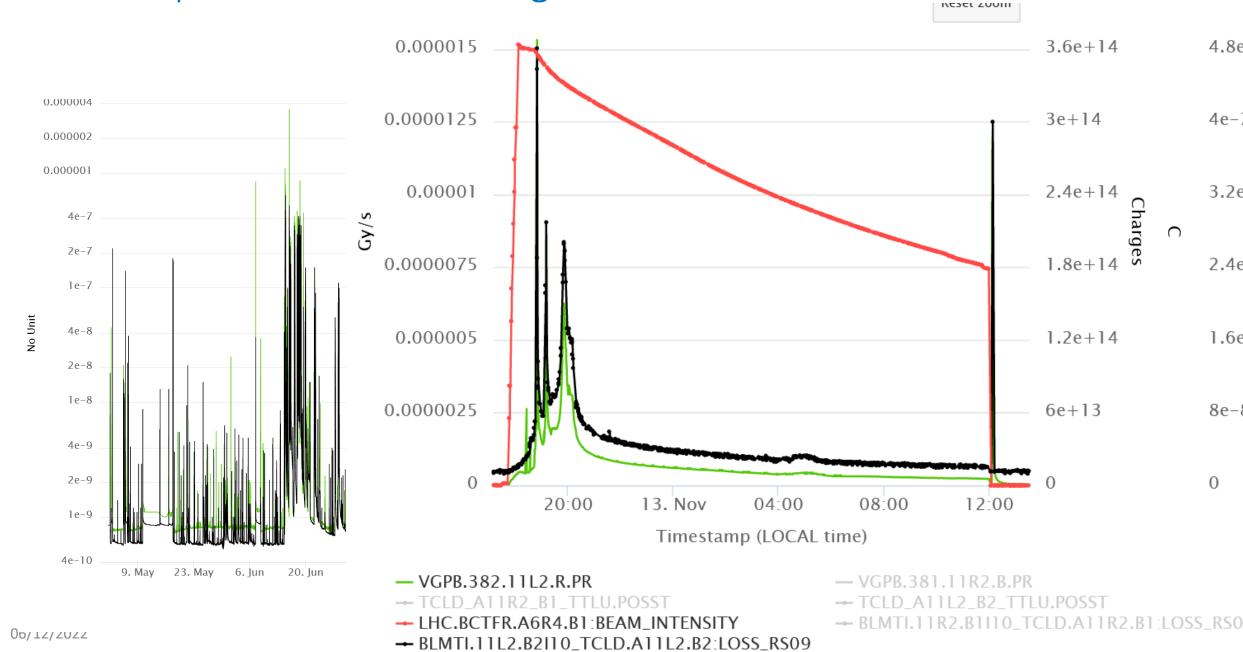

Francesco Velotti Evian 2019


MKI temperature outlook for 2022

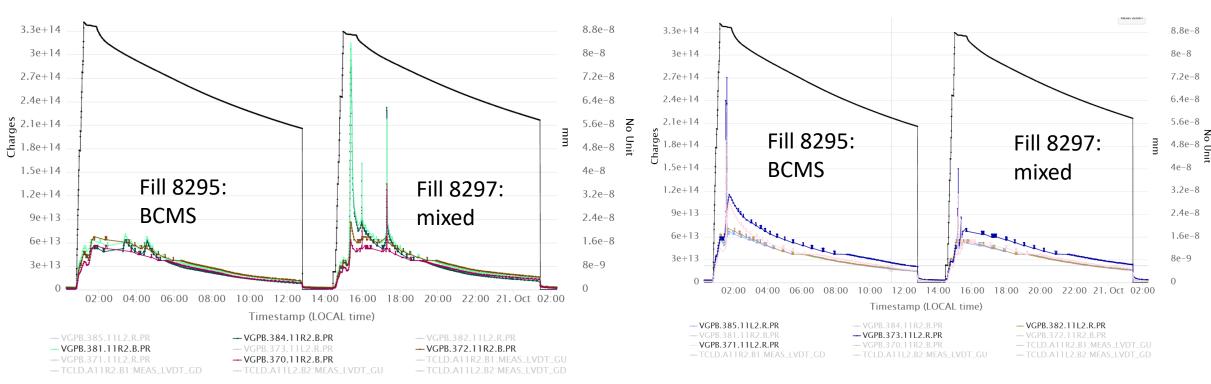
Vacuum spikes near TCLDs



Vacuum spikes near TCLDs



Impact of filling scheme: mixed schemes


- 8b4e/BCMS mixed scheme breaks the modulation pattern
 - \rightarrow mush smaller sidebands

Vacuum spikes observed during the run: TCLDs

Vacuum behaviour near TCLDs

Vacuum pressure in 11R2

 \rightarrow Mixed scheme does not look better than BCMS for 11R2

 \rightarrow Mixed scheme similar to BCMS for 11L2

Vacuum pressure in 11L2

 \rightarrow These locations will be checked with Xrays