Joint Accelerator Performance Workshop 2022
Slow extraction improvements

Pablo Arrutia

Many thanks to the SPS & PS Operations Teams, all equipment groups, the NA62 experiment and everyone who helped me with this talk:
Intro

Slow extraction improvements and R&D in 2022 aimed at addressing IEF WS 2021 feedback (and more):

- ‘Review fast spill monitoring across complex’
- ‘Add planned periods to work with Experiments on spill structure in SPS - MDs or commissioning time’
- ‘Improve spill structure and monitoring in PS and SPS’: ‘Spill structure (spike, harmonics) and monitoring “flatness of spill and duty cycle as important as intensity”’
Intro

Slow extraction improvements and R&D in 2022 aimed at addressing IEF WS 2021 feedback (and more):

- ‘Review fast spill monitoring across complex’
- ‘Add planned periods to work with Experiments on spill structure in SPS - MDs or commissioning time’
- ‘Improve spill structure and monitoring in PS and SPS’: ‘Spill structure (spike, harmonics) and monitoring “flatness of spill and duty cycle as important as intensity”’

Simulations interfacing slow ripple with RF structure

The virtuous loop of slow extraction

Metrics well-aligned with experimental request

Instrumentation across Hz to 100s MHz

Techniques, strategies for improvement

Controls/Optimisation

Joint Accelerator Performance Workshop 2022
Slow extraction improvements
P. Arrutia
Outline

- Empty bucket channelling (EBC)
- Non-local crystal shadowing
- Other topics
Empty Bucket Channelling (EBC)

My Bucket List
- Get an Empty Bucket
RF cavities turned on during extraction, with a frequency offset from beam.

Particles channel between empty buckets -> coherent kicks.

EBC improves spill quality across entire low-frequency spectrum.

Ripple suppression region identified during July MDs -> Move towards operational tests.
Spill quality improvements

- **Ripple reduction by 5x**, without auto-triggering the feed-forward optimiser. Confirmed by experiments:

 - Operational test data
 - NA62 data

Typically at 1300/1500, at ~1000 with EBC

Joint Accelerator Performance Workshop 2022
Slow extraction improvements
P. Arrutia
Beam loss

- Beam losses can be kept under control.
- Manipulation is compatible with crystal shadowing as long as RF voltage kept modest. Otherwise, increase angular spread -> decreased efficiency.
SPS machine stability

- Variations in super-cycle (hysteresis) can mismatch the revolution frequency of the beam with respect to the optimum EBC frequency.
- Re-alignment strategies being studied, similar approaches to crystal shadowing.

Reduced suppression:

- Spike at beginning of burst

Joint Accelerator Performance Workshop 2022
Slow extraction improvements
P. Arrutia
QF/QD ripple drifts

- Power converter ripple amplitude in QF/QD drift observed during tests.
- The source of the ripple (100 Hz) needs understanding and attacking, further investigations shown later in this talk.
- EBC suppresses the ripple well but cannot stop the drift.

50, 100Hz components of QF/QD power converters current

50, 100 Hz components of spill
Control of 800 MHz system at FT

The 200 and 800 MHz frequency programs cannot be controlled independently:

- Optimal settings for 200 MHz debunching compensation and optimal settings for 800 MHz EBC are in conflict
- Optimising the 800 MHz system for EBC leads to some 200 MHz structure during the debunching
- No 800 MHz structure apparent

Proposal: switch 800 MHz system to independent fixed frequency at SFTPRO FT.
Dumped intensity

Dumped intensity higher than operational for certain scenarios. Possible sources:

- Some beam is trapped inside bucket (after super-cycle change).
- Some beam crosses resonance too fast to be extracted. Simulations predict < 1% impact from this effect.
Open points and follow-up

• Initial iteration with RF suggests no apparent show-stoppers for the requested 800 MHz feature, but implementation requires work so priority must be understood.

• Systematic approach of empty bucket re-alignment must be produced, either with automated tools or with written procedure. Consists of simple trim offset on frequency. Goes hand-in-hand with machine stability improvements (hysteresis)
Non-local Crystal Shadowing

Courtesy of F. Velotti

No, not that kind of crystal...
Non-local shadowing: **Exploit non-linearities and multi-regime effect to optimise loss reduction** at the ZS via thin crystal.

To obtain a x4 loss reduction, simulations show that a 1.8 mm thick crystal was needed.

Only crystal available at the moment was same as in LSS2 (TECS) → 0.8 mm

Installed in LSS4 on new goniometer during last YETS.
October MD

- Only TECA, non-local shadowing in LSS4.
- Clearly seen that TECA touches more regimes at once (VR, AM, CH) → in case largest part of separatrix is in CH, loss reduction of ~20%
- When optimal sharing between CH+VR+AM → largest loss reduction ~45%

![Graphs showing AM, VR, and CH scans with loss data](image)
November MDs

- Confirmed that mix of regimes minimises losses.
- Hysteresis effects observed between stops.
- Combining both local and non-local systems brings losses down by 51%!

![Graph](image-url)
Open points and follow-up

- **Large error in crystal movement**
 - Fully dominated the first measurements campaign.
 - Great improvements for the last MD → finally possible to perform scans (e.g. linear).
 - Crystal angular resolution ~10 urad, we need less to accurately probe channelling deep.

- Denser separatrix at TECA location → **high losses in LSS4 as expected**
 - Operational test postponed to next year – need another *discussion with RP*.
 - Probably mask needed → detailed simulations of the expected activation and shielding needed before next year commissioning.

- Propose to do **operational test** (TECA in for about 24h) **on first days of physics**.

- **Awaiting for 1.8 mm crystal to move towards 4x loss reduction.**
Other topics
PS: a great test bed

- **PS higher MD availability and lower risk of equipment damage extremely useful for tests.**
- EBC first implemented in PS, **results translated very well to SPS.**
- See M. Delrieux’s talk for more examples.
- Crucial addition: dBLM during upcoming YETS (thanks to PBC support).

RF structure

Joint Accelerator Performance Workshop 2022
Slow extraction improvements
P. Arrutia
SPS: OP tools, non-OP features

Current auto-spill 50 ms resolution introduces some ripple at 20 Hz, reported by NA62. Suggestions:

- Feature to add low-pass filter to central portion of correction trim.
- Increase resolution (Moves problem to new freq.).

Current freq default behaviour causes freq. jump when loops go off -> not optimal for 200 MHz compensation.
SPS: Power converter analysis

- Power converter stability key component of high-performance slow extraction.
- Investigation of all relevant frequency spectra performed before and after spill deterioration (May 12th 2022).
- No obvious culprits found among quads, dipoles and chromatic/harmonic sextupoles.

F-quad analysis
Simulation/tooling

- Computational tools play crucial role for understanding and improving slow extraction performance.
- i-FAST REX WG led by F. Velotti for simulations on slow extraction.
- **Xsuite effort is being supported** and simulations are being benchmarked and ported, exploiting GPU capabilities and python flexibility.
- **EBC tests in SPS in great agreement with simulation predictions** -> potential for model-based optimisation.
Fast instruments & work with experiments

- Pushing for fast detection devices if experiments need uniformity in the 100s MHz scale - progress on dBLM and OTR during EBC MDs.
- Established workflow with NA62 to exploit their ~70 ps acquisition systems during MDs and tests for EBC.

F. Roncarolo et al
Conclusions & Further Work

• **EBC with 800 MHz system demonstrated 5x ripple improvement**, re-alignment needs addressing, RF frequency offset feature is important.
• **Non-local shadowing combined with local shadowing cut ZS losses in half**, RP considerations for LSS4 on-going, operational test next year.
• RF manipulations to **increase momentum spread** being tested -> faster tune sweep.
• **Noise techniques to be investigated** in PS to extract with fixed magnetic elements (to remove slow drifts) and in SPS to further improve spill quality.
• Will **revisit octupole folding** in SPS in context of ECN3 HI facility to further reduce ZS losses.
• Recommendation: **compile NA & EA spill requirements and limits** in 'common language'.

Noise techniques

Boussard et al.

Octupole folding

M. Fraser

Joint Accelerator Performance Workshop 2022
Slow extraction improvements
P. Arrutia
THANK YOU.
EXTRA SLIDES
EBC
Phase displacement BU

Before

\(\Gamma = 1.5, \text{ turns} = 445 \)

After

\(t \text{ [s]} \)

\(\delta \text{ [T]} \)
EBC, Simulation: 200 MHz

Ripple suppression

Reductions of up to 2 orders of magnitude predicted by simple simulation model.

Limitations

High voltages can perturb beam, need to keep it in mind.

- Beam size blow-up -> Losses
- Beam bunching -> event overlap

1 period of 200 MHz
EBC, Measurements: Ripple suppression

200 MHz

800 MHz

\[F = \frac{\langle I(t) \rangle^2}{\langle I^2(t) \rangle} \leq 1 \quad \text{(DC power) : (Total Power)} \]
Non-local shadowing – optimisation
November MD

- Complete linear scan and angular scan focusing in shadowing
 - Many angular scan but beam not very stable
 - After AM scan, clear movement of relative alignment of TECA and ZS
 - Loss reduction obtained with TECA only in the same order of previous MD → ~45%

![Graphs showing linear and angular scans with loss vs. TECA position and angle]
Global loss reduction (unsplit optics in TT20)
Non-local crystal scans
Empty bucket channelling MDs in the PS

- Channelled the beam without extraction both with sinusoidal buckets and barrier buckets:

- Implemented channelling in slow extraction to the EAST area to improve spill quality: