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Machine Learning in IceCube



1. Neutrino physics and IceCube
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Physics motivation
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IceCube detector
###
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Beyond IceCube
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Generating processes
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↓Down-going (mostly µ)

↑ Up-going (only ν)
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Rates
● Atmospheric µ ~ O(103 Hz) 

● Atmospheric ν ~ O(10–3 Hz) 
● Astrophysical ν ~ O(10–7 Hz) ~ O(1/month)

Cosmic rays

Cosmic rays
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IceCube events
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http://www.youtube.com/watch?v=2DDQYHIbL3Q
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Event topologies

“Track-like”
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“Cascade-like”
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IceCube’s data is unique

● High rates, O(kHz) × O(10 years)

● Often sparse charge deposits

● Non-trivial geometry

● Geometrically heterogeneous, 
nested sub-detectors

● Similar detection method in all 
sub-detectors
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RETRO — reverse table reconstruction [2203.02303] 

Sum of explicit per-DOM likelihood:

for finding pulses at times ti given 8-dimensional 
parameter set θ comprising interaction vertex, 
pointing (zenith and azimuth), and “track” resp. 
“cascade” energy depositions.

Optimised directly for each event (2D slice →)

Inference speed ≈ O(40 sec./event)

Classical approaches to reconstruction in IceCube

10/  Figures from [2203.02303]

https://arxiv.org/abs/2203.02303
https://arxiv.org/abs/2203.02303


2. Machine Learning in IceCube
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Time / maturity

Machine learning

BDT

RF

Shallow MLP

Deep learning

Deep MLP

… with geometric structure

RNN

CNN

Arc of ML in physics (not just IceCube):

From  Simple, analysis-level models on high-level 
features
Towards  Complex, multi-purpose models on 
low-level features

→  Focus on neural networks as a highly flexible 
ML paradigm

Approx. 50 literature results covering:
● Boosted decision trees [1705.08103]
● Random forests [2006.05215]
● Deep neural networks [1906.04317]
● Convolutional neural networks [2101.11589]
● Etc.

+  Many not-yet-public efforts

Machine learning in IceCube is maturing

12

… with dynamic geometric structure

(...)

Engineered 
(High-level, 
low-dim.)

Raw 
(Low-level, 
high-dim.)

Paradigm Inputs

https://arxiv.org/pdf/1705.08103.pdf
https://arxiv.org/abs/2006.05215
https://arxiv.org/abs/1906.04317
https://arxiv.org/abs/2101.11589
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Common types of neural networks
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(Deep) Neural network — (D)NN
Occasionally: Multi-layer perceptron (MLP)

Structure

No inherent geometric structure

Example

Engineered, high-level event features

Recurrent neural network (RNN)

Structure

Sequential

Example

Time-series

Convolutional neural network (CNN)

Structure

Orthogonal data, translation invariance

Example

Images
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2-3 orders of magnitude reduction in reconstruction time150% improvement in resolution at high energies

Machine Learning shows vast potential in IceCube
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For instance, high-energy cascade reconstruction using CNNs:

1 CNN run on GPU./  Figures from [2101.11589] 

https://arxiv.org/abs/2101.11589
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But CNNs face conceptual challenges

Requirement

🔧 Splitting up sub-detectors

🔧 Distorting geometry

🔧 Pulses must be “summarised” to DOM-level

🔧 Highly specialised kernels
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Risk

❌ Weakening local correlations

❌ Losing geometric details

❌ Losing granular information

❌ Reducing generalisation potential

/  Image from [2101.11589] 

https://arxiv.org/abs/2101.11589
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Unifying “zoo” of architectures

Graph Neural network — GNN

Representation

Data xi on nodes a graph; nodes connected by edges aij 

Structure

Any that can be encoded through adjacency of nodes

Most neural network architectures can be seen as special 
cases of the GNN with added structure 
(Bronstein et al., 2021)
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Image adapted from:
Bronstein, Geometric foundations of deep learning (2021) 

D
Pulse, e.g.

Exchange of 
information

https://towardsdatascience.com/geometric-foundations-of-deep-learning-94cdd45b451d
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Plus:
✅ No need to “summarise” pulses to DOM-level

✅ No need for specialised kernels

✅ Ability to encode physics, material properties, 

etc. into structure, e.g.,

Challenge

⛰ Sparse charge deposits

⛰ Non-trivial geometry

⛰ Nested sub-detectors

Addressed

✅ Only ingest hit PMTs in each event

✅ No requirements on structure

✅ Information transfer among all nodes

Why GNNs are a natural choice in IceCube 
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… with the regular DL benefit:
✅ Fast inference
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Anatomy of a graph neural network
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✕ N

✕ M

Optional

Pulses →

→ Event-level
     prediction 
    (e.g., energy)

→ Node-level prediction 
    (e.g., noise label)

↪

↩

Physics goes here!
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But…

… are graphs then always
the right solution?
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Electromagnetic and hadronic calorimeters are mostly 
“pixelated” in azimuth and pseudorapidity with a few depth 
layers (≈ colour channels)

→ CNNs are a very reasonable and effective paradigm (~x2 in 
background rejection vs. simple combinations of analytically 
calculated jet substructure moments) 

S
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Detour: General-purpose exps. at CERN

20/  Photographs © STFC
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https://hepwww.pp.rl.ac.uk/groups/CMSvpt/bestphotos/Crystal%20Palace/slides/F2_026_23.htm
https://hepwww.pp.rl.ac.uk/groups/cmsvpt/bestphotos/867/slides/IMGP0329%20mod.htm
https://arxiv.org/abs/1511.05190
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“RNN based b-tagging algorithm can exploit the spatial and 
kinematic correlations between tracks which are initiated from 
the same b-hadron” (ATL-PHYS-PUB-2017-003) which 
alternative methods don’t easily allow for, and the notion of an 
impact parameter provides a natural track ordering for the task.

→ RNNs are a very reasonable and effective paradigm (~x2.5 
in light-jet background rejection vs. comparable, analytical 
algorithm) 

S
ource: W

ikim
edia / N
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artosik 

Detour: General-purpose exps. at CERN
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Source: ATL-PHYS-PUB-2017-003 

https://cds.cern.ch/record/2255226/files/ATL-PHYS-PUB-2017-003.pdf
https://commons.wikimedia.org/wiki/File:B-tagging_diagram.png
https://cds.cern.ch/record/2255226/files/ATL-PHYS-PUB-2017-003.pdf
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… plus tracking, secondary vertex finding, pile-up mitigation, and more report marked performance 
improvements from GNNs vs. other, seemingly well-motivated approaches.

Take-away: Despite other paradigms being seemingly good fits for the underlying structure of specific 
problems, GNNs can be considered a more fundamental paradigm that generalises the others.

Still, GNNs providing large performance gains…
Top-jet identification (CMS’s ParticleNet, 2020) 
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(...)

2D CNN → 

GNN → 

+40%

b-jet tagging (ATLAS’s GN1, 2022)

← Comb. RNN 
    + DNN 
    + Expert vars.

+2-300%

Single 
multi-objective GNN

https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8
https://link.springer.com/article/10.1140/epjc/s10052-021-09342-y
https://arxiv.org/abs/1810.07988
https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.101.056019
https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf
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Graph neural networks in IceCube and beyond, so far
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Choma et al., IceCube [1809.06166] 

µ vs. νµ classification, out-performing CNN 
and line-fit

Reck et al., KM3NeT [2107.13375] 

Muon bundles multiplicity and neutrino PID

🥁 … and … 🥁

https://arxiv.org/abs/1809.06166
https://arxiv.org/abs/2107.13375


Hot-off-the-press result 🔥
[2209.03042] 

https://arxiv.org/abs/2209.03042
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Scope
Monte Carlo-based proof-of-concept paper on the use of GNNs in IceCube for a variety of physics tasks 
targeting the low-energy region (1 GeV – 1 TeV; most events in 50 – 200 GeV) → Potential to improve 
sensitivity to oscillation params.

Event selection
Leveraging existing 7-level event selection process designed for oscillation analyses, which was aimed at 
reducing the approx. 3 kHz trigger rate to approx. 1 mHz (i.e., > ×106 reduction) required for the 
application of (slow) state-of-the-art reconstruction such as RETRO.

Implications
Performance gains from GNNs applied at the 7th level of a reconstruction chain based on simpler 
approaches (out of necessity) are lower bounds on the impact of GNNs on physics analyses, as their 
fast inference times allows for leveraging high-precision reconstruction much earlier in the reconstruction.

GNNs for Low-Energy Event Classification & Reconstruction

25

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.99.032007


Machine Learning in IceCube

The “DynEdge” model
Anatomy: 
● Connecting 8 nearest pulses

○ xyz-space for first convolution
○ Dynamical edge connections for 

each of four subsequent GNN 
layers (“DynEdge”)

● Single-layer MLP-based “edge 
convolutions” operation

● Skip connection between convolutional 
layers

● Four global poolings + high-level 
features (homophily + num. pulses)

● Single-layer readout MLP

● All models single-task

26/  Image from [2209.03042] 

https://arxiv.org/abs/2209.03042


Performance studies

1. Neutrino vs. muon classification
2. Track vs. cascade classification
3. Neutrino energy reconstruction
4. Neutrino zenith reconstruction
5. Impact on oscillation contours
6. Robustness to systematic uncertainties

Neutrino sample purity

Oscillation analysis binning

Oscillation analysis sensitivity

Robustness of ↑



Machine Learning in IceCube

Neutrino vs. muon classification

Motivation
Atmospheric muons constitute the largest 
background. Identifying neutrinos among these are 
essential to a pure signal.

ML task
Binary classification of muon vs. neutrino events.

Result
● At fixed background rejection, DynEdge improves 

signal efficiency by 18%, vs. in-use BDT.
● At signal efficiency, DynEdge increases muon 

background rejection by > ×8.

28/  Figure modified from [2209.03042] 

— 1/6

https://arxiv.org/abs/2203.02303
https://arxiv.org/abs/2209.03042


Machine Learning in IceCube

Tracks vs. cascade classification

Motivation
IceCube is not sensitive to individual neutrino flavours, 
but uses “track” and “cascade”-like events and proxy 
categories. These are crucial for oscillation 
measurements, which rely on flavour identification to 
measure, e.g., muon neutrino disappearance.

ML task
Binary classification of track- vs cascade-like events.

Result
About 6% improvement in ROC AUC, cf. in-use BDT, 
yielding significantly cleaner “PID” bins.

29/  Figure modified from [2209.03042] 

— 2/6

https://arxiv.org/abs/2203.02303
https://arxiv.org/abs/2209.03042


Machine Learning in IceCube

Neutrino energy reconstruction

Motivation
Oscillation analyses are binned in energy, meaning 
that improved energy resolutions leads to sharper 
oscillation measurements.

ML task
1D regression using log-cosh loss in log10(E/GeV). 
Relative improvements vs. RETRO are measured 
according to the 68%–inter-percentile range of the 
residuals in E.

Result
Average improvement in resolution of around 20% 
in the energy range relevant for oscillation 
measurements 
(1 GeV < E < 100 GeV, or 0 < log10(E/GeV) < 2)

30/  Figure modified from [2209.03042] 
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https://arxiv.org/abs/2209.03042


Machine Learning in IceCube

Neutrino zenith reconstruction

Motivation
Oscillation analyses are binned in distance, which for 
atmospheric neutrinos corresponds to the zenith 
angle (i.e., angle wrt. the horizon). This means that 
improved zenith resolutions leads to sharper 
oscillation measurements.

ML task
1D regression using von Mises-Fisher loss to quantify 
uncertainty through Gaussian approximation.

Result
Average improvement in resolution of around 20% 
in the energy range relevant for oscillation 
measurements (E < 100 GeV, or log10(E/GeV) < 2)
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/  Figure modified from [2209.03042] 

— 4/6

https://arxiv.org/abs/2209.03042
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Impact on oscillation contours

Background
IceCube uses an analysis software called PISA for 
oscillation analyses. By providing energy, zenith and 
track vs. cascade predictions, PISA can produce the 
corresponding oscillation contours. This can be used 
to produce simplified oscillation contour that ignore 
systematic uncertainties, thereby isolating the impact 
of different reconstruction algorithms.

Result
Improvements seen on this plot corresponds to an 
additional 2.5 detector-years, or 20% in terms of 
area. Lower estimate of GNN impact on physics 
results.

32

— 5/6

/  Figure by R. Ørsøe, Neutrino 2022 poster

https://github.com/icecube/pisa
https://indico.kps.or.kr/event/30/contributions/785/
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Robustness to systematic uncertainties

Motivation
With complex deep learning models acting on 
low-level inputs, there may be a (healthy) fear that 
they “overfit” patterns in the training data, and do not 
extrapolate well to unseen data (e.g., variations under 
systematic uncertainties).

Result
Almost identical behaviour to RETRO, which is entirely 
based on physically inspired modelling. This suggests 
that the GNNs does not seem to introduce a greater, 
or less intuitive, dependence on systematic 
uncertainties.

33/  Figure modified from [2209.03042] 
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Recap

34

● GNNs provide significant improvement in performance over alternative 
approaches, both likelihood-based and ML-based.

→ Increase sensitivity of e.g. oscillations analyses.

● GNNs provide speed-ups over likelihood-based reconstruction by several 
orders of magnitude.

→ Deploy high-resolution reco. at near-real time, early in analysis chain

● Seamless to extend to other detector / DOM configurations using same set 
of components.

→ Can support any upgrades to, and extensions of, the IceCube 
experiment.



Machine Learning in IceCube

Future research directions
Currently done:

● Per-event classification and regression
● Per-node (pulse, OM) classification and regression

Future directions:

● Physics-informed GNNs
● Segmentation of overlapping events
● Adversarial training / domain adaptation for mitigation of data/MC differences and parametrised 

systematic uncertainties
● GNN explainability
● Anomaly detection
● Etc.

35



3. Ways of working with ML in physics
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In experimental particle physics,
machine learning only has real value

when used on experimental data.

🌶 Spicy take 🌶

37
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The challenge with machine learning in physics

38

Challenge

⛰ Developers may have little ML experience

⛰ Siloed development, often from scratch

Risk

❌ Brittle, suboptimal solutions

❌ Time spent on “boilerplate” instead of physics

from tensorflow.keras import *
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We’re working on very related problems
Similar detectors, data, physics processes, deployment setting, end-users, etc.

39

Task Physics process Regime Detector

Particle ID
Energy reco.
Pointing reco.
Vertex position
Noise cleaning
Etc.

“Zoo” of use cases not solved holistically

Noise
μ
νe

νμ

vτ

BSM

Low-energy
High-energy

IceCube-86
DeepCore
Upgrade
Gen-2
Etc.

Choma et al.

[2101.11589]

Low-E double-bang

✕ ✕ ✕
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Potential for new ways of working with ML in physics

Potential
● Address “zoo” of ML use cases holistically

● Collaboration between individual use cases

● Using validated, best-practices code

● Efficient software/ML development workflows

40

Outcome
● More time for physics

● Better, more reliable results

● Contributions of individual ML developers 
has a broader, lasting impact in the 
collaboration

Proposition
● Reusable GNN components for plug-and-play ML

● All components for end-to-end ML pipeline (data → prod.)

● Validated code, following best practices

● Applicable across all of IceCube + other experiments
icecube/graphnet

graphnet-team

https://github.com/icecube/graphnet
https://join.slack.com/t/graphnet-team/signup
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Inference dataTraining data Deployment

Model training

Factoring out ML from physics

41
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GraphNeT in a nutshell
Modularised, plug-and-play ML components for any use case.

42
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GraphNeT in a nutshell

43

from graphnet import (
  EuclideanGraphBuilder as GraphBuilder,
  IceCubeUpgrade as Detector,
  DynEdge_V2 as GNN,
  EnergyReconstruction as Task,
)

# Go do physics!
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…ideally
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from graphnet import Model

model = Model.from_pretrained(
    "icecube-low-energy-neutrino-v2"
)

# Go do physics!
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Collaboration impact
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Baikal-GVD

IceCube
KM3NeTP-ONE
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Summary

● What IceCube is, what it does, and how it has traditionally operated. 

● How more standard ML has been used in IcCube and to what effect.

● How effective GNNs are in IceCube and similar experiments

● How to optimise the impact of ML on physics through new ways of working.

46



47



Appendix



Machine Learning in IceCube

Why a platform approach to ML may work for IceCube
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General-purpose exps. at CERN Optical neutrino telescopes like IceCube

Detector Several different detection principles and 
detectors used

Same basic detection principle + devices used 
across all sub-detectors

Reconstruction 
tasks

Myriad of reco tasks: PID and properties for 
most SM particles + dedicated BSM reco., each 
possibly leveraging multiple sub-detectors 

Few reconstruction tasks: PID + few properties 
only for neutrinos and muons

Potential for 
synergy

The various performance groups operate on 
different inputs with different end goals. Hard to 
unify efforts across these groups. However, with 
the advent of particle or unified flow objects, 
which tries to provide a unified representation of 
all “particles” at the reconstruction-level, 
perhaps this could become (more) feasible — 
and perhaps solvable within a GNN paradigm.

Simplistically, all analysis rely on a large sample 
of high-purity neutrino events (excl. atm. muons 
+ noise), with precise flavour ID (track/cascade), 
energy, and pointing.

Large physics impact (no. analysis) from 
improving central reconstruction. Pre-trained 
models have high utility.


