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1. Neutrino physics and IceCube
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lceCube detector
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Beyond IceCube
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Cosmic rays

Generating processes
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Cosmic rays
Rates

e Atmospheric p ~ O(10° Hz)
e Atmospheric v ~ O(107% Hz)
e Astrophysical v ~ O(10~" Hz) ~ O(1/month)

Atmosphere
(not to scale)
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lceCube events
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http://www.youtube.com/watch?v=2DDQYHIbL3Q
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lceCube’s data is unique

e High rates, O(kHz) x O(10 years)
e Often sparse charge deposits
e Non-trivial geometry

e Geometrically heterogeneous,
nested sub-detectors

e Similar detection method in all
sub-detectors
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Classical approaches to reconstruction in IceCube

RETRO — reverse table reconstruction [2203.02303]

Sum of explicit per-DOM likelihood:

log £(9) = ZlogP (t:]0) — A(6) —

for finding pulses at times t. given 8-dimensional —3201
parameter set 6 comprising interaction vertex,

—— ] I
pointing (zenith and azimuth), and “track” resp. g 240 3
“cascade” energy depositions. ™ 360 !
Optimised directly for each event (2D slice —) _380

Inference speed =~ O(40 sec./event)

y (m)
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https://arxiv.org/abs/2203.02303
https://arxiv.org/abs/2203.02303
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Machine learning in IceCube is maturing

Approx. 50 literature results covering:

e Boosted decision trees [1705.08103]
Random forests [2006.05215]
Deep neural networks [1906.04317]
Convolutional neural networks [2101.11589]
Etc.

+ Many not-yet-public efforts

Arc of ML in physics (not just lceCube):

From Simple, analysis-level models on high-level
features

Towards Complex, multi-purpose models on
low-level features

— Focus on neural networks as a highly flexible
ML paradigm

Paradigm Inputs
Machine learning Engineered
(High-level,
low-dim.
Deep learning ow-dim.)
... with geometric structure Raw
(Low-level,
high-dim.)
BDT ... with dynamic geometric structure
RF RNN
Shallow MLP | Deep MLP CNN (..)

Time / maturity

Machine Learning in IlceCube
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https://arxiv.org/pdf/1705.08103.pdf
https://arxiv.org/abs/2006.05215
https://arxiv.org/abs/1906.04317
https://arxiv.org/abs/2101.11589

Common types of neural networks

(Deep) Neural network — (D)NN

Q0000
00[010]0)0)0
O

Structure
No inherent geometric structure

Example
Engineered, high-level event features
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Recurrent neural network (RNN)

Structure
Sequential

Example
Time-series

Convolutional neural network (CNN)

NRW
WA

e

Structure
Orthogonal data, translation invariance

Example
Images
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Machine Learning shows vast potential in IceCube

For instance, high-energy cascade reconstruction using CNNs:

50% improvement in resolution at high energies 2-3 orders of magnitude reduction in reconstruction time’
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https://arxiv.org/abs/2101.11589

But CNNs face conceptual challenges

Requirement Risk

/~ Splitting up sub-detectors X Weakening local correlations

./~ Distorting geometry X Losing geometric details

./~ Pulses must be “summarised” to DOM-level X Losing granular information

/~ Highly specialised kernels X Reducing generalisation potential
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https://arxiv.org/abs/2101.11589

Unifying “zoo” of architectures

Image adapted from:
Bronstein, Geometric foundations of deep learning (2021)

Machine Learning in IceCube

Graph Neural network — GNN

Representation

Data x; on nodes a graph; nodes connected by edges a;

Structure
Any that can be encoded through adjacency of nodes

x], <«— Pulse, e.q.

Exchange of O
information 7~ \ %ij

O X; O
C O

Most neural network architectures can be seen as special
cases of the GNN with added structure
(Bronstein et al., 2021)
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https://towardsdatascience.com/geometric-foundations-of-deep-learning-94cdd45b451d

Why GNNSs are a natural choice in IlceCube

i Challenge
i O v
O & Sparse charge deposits
( )x; i
( & Non-trivial geometry
( O & Nested sub-detectors
Plus:

4 No need to “summarise” pulses to DOM-level
4 No need for specialised kernels
4 Ability to encode physics, material properties,

etc. into structure, e.g.,

sign(Atj)

ajj

Machine Learning in IlceCube

A+ XA

Addressed
.4 Only ingest hit PMTs in each event
.4 No requirements on structure

.4 Information transfer among all nodes

... with the regular DL benefit:
4 Fast inference

17



Anatomy of a graph neural network

x N

o O

(O © O

Pulses — — Node-level prediction
O @ O (e.g., noise label)
\a 2 2 ‘\a <
Input Graph connectivity Message-passing layer Node update layer
/ : M
o O
Physics goes here! ( h
= Q@ G
- O
N
> W % — Event-level
Z 2 @ o prediction
(e.g., energy)
\ J
Message-passing layer Node update layer
[ e e e e o
Optional

Machine Learning in IceCube

18



But...

Machine Learning in IlceCube

... are graphs then always
the right solution?
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Detour: General-purpose exps. at CERN

Electromagnetic and hadronic calorimeters are mostly
“pixelated” in azimuth and pseudorapidity with a few depth
layers (= colour channels)

— CNNs are a very reasonable and effective paradigm (~x2 in
background rejection vs. simple combinations of analytically
calculated jet substructure moments)

Convolved
Convolutions Feature Layers

Max-Pooling

W= WZ event

Source: [1511.05190] Repeat
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https://hepwww.pp.rl.ac.uk/groups/CMSvpt/bestphotos/Crystal%20Palace/slides/F2_026_23.htm
https://hepwww.pp.rl.ac.uk/groups/cmsvpt/bestphotos/867/slides/IMGP0329%20mod.htm
https://arxiv.org/abs/1511.05190

Detour: General-purpose exps. at CERN

“RNN based b-tagging algorithm can exploit the spatial and
kinematic correlations between tracks which are initiated from

—3% tracks b jet
the same b-hadron” (ATL-PHYS-PUB-2017-003) which
alternative methods don’t easily allow for, and the notionofan b hadron
impact parameter provides a natural track ordering for the task. - impact

parameter

— RNNSs are a very reasonable and effective paradigm (~x2.5
in light-jet background rejection vs. comparable, analytical )28 secondary
algorithm) vertex

do,_
‘ 70'\primary vertex

’
/
4
’

Source: ATL-PHYS-PUB-2017-003
Machine Learning in IlceCube
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https://cds.cern.ch/record/2255226/files/ATL-PHYS-PUB-2017-003.pdf
https://commons.wikimedia.org/wiki/File:B-tagging_diagram.png
https://cds.cern.ch/record/2255226/files/ATL-PHYS-PUB-2017-003.pdf

Still, GNNs providing large performance gains...

Top-jet identification (CMS’s ParticleNet, 2020) b-jet tagging (ATLAS’s GN1, 2022)
S 10°F ATLAS Simulation Preliminary ~ — our 3 Gomb. RNN
.i_’. 10° ,gzzof;ei 250 GeV —— GN1 Lep ] + DNN
1/ep at &, = 30% 5 + Expert vars.
2D CNN — ResNeXt-50 1147 £58 — £"F 1
P-CNN 759 + 24 3 10°F 1 Single
PEN () 888 + 17 +40% WL ] multi-objective GNN
ParticleNet-Lite 1262 + 49 o . . .
GNN — ParticleNet 1615 + 93 = 3 T T T
_—
+2-300% o QM_

(o=

6 0.7 08 09 To
b-jet tagging efficiency

... plus tracking, secondary vertex finding, pile-up mitigation, and more report marked performance
improvements from GNNs vs. other, seemingly well-motivated approaches.

Take-away: Despite other paradigms being seemingly good fits for the underlying structure of specific
problems, GNNs can be considered a more fundamental paradigm that generalises the others.

Machine Learning in IceCube 22


https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8
https://link.springer.com/article/10.1140/epjc/s10052-021-09342-y
https://arxiv.org/abs/1810.07988
https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.101.056019
https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf

Graph neural networks in lceCube and beyond, so far

Choma et al., lceCube [1809.06166] Reck et al., KM3NeT [2107.13375]

1.0 Muon multiplicity reco for events between 500 and 600 hits

x QNN KM3NeT Preliminary, ORCA4 simulations
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true muon multiplicity
p vs. v classification, out-performing CNN
and line-fit Muon bundles multiplicity and neutrino PID
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https://arxiv.org/abs/1809.06166
https://arxiv.org/abs/2107.13375

Hot-off-the-press result
[2209.03042]

arXiv:2209.03042v1 [hep-ex] 7 Sep 2022

PREPARED FOR SUBMIssION To JINST

Graph Neural Networks for Low-Energy Event
Classification & Reconstruction in IceCube

R. Abbasi,'¢ M. Ackermann,®? J. Adams,'” N. Aggarwal,* J. A. Aguilar,'' M. Ahlers,2! M.
Ahrens,’? J.M. Alameddine,? A. A. Alves Jr.,*° N. M. Amin,*? K. Andeen,*’ T. Anderson,*®*°
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Busse,’' M. A. C *7 E. G. Carnie-Bi ,! C. Chen,’ Z. Chen,** D. Chirkin,* K.

Choi,** B. A. Clark,” L. Classen,' A. Coleman,*? G. H. Collin,'* A. Connolly,'%2° J. M.
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Heuermann,” S. Hickford,®! C. Hill,!5 G. C. Hill,! K. D. Hoffman,'8 K. Hoshina,*:¢ W. Hou,3" T.
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https://arxiv.org/abs/2209.03042

GNNs for Low-Energy Event Classification & Reconstruction

Scope

Monte Carlo-based proof-of-concept paper on the use of GNNs in IceCube for a variety of physics tasks
targeting the low-energy region (1 GeV — 1 TeV; most events in 50 — 200 GeV) — Potential to improve
sensitivity to oscillation params.

Event selection

Leveraging existing 7-level event selection process designed for oscillation analyses, which was aimed at
reducing the approx. 3 kHz trigger rate to approx. 1 mHz (i.e., > x10° reduction) required for the
application of (slow) state-of-the-art reconstruction such as RETRO.

Implications

Performance gains from GNNs applied at the 7th level of a reconstruction chain based on simpler
approaches (out of necessity) are lower bounds on the impact of GNNs on physics analyses, as their
fast inference times allows for leveraging high-precision reconstruction much earlier in the reconstruction.

Machine Learning in IceCube 25


https://journals.aps.org/prd/pdf/10.1103/PhysRevD.99.032007

The “DynEdge” model

Anatomy:
e Connecting 8 nearest pulses
o xyz-space for first convolution

o Dynamical edge connections for
each of four subsequent GNN
layers (“DynEdge”)

e Single-layer MLP-based “edge
convolutions” operation

e Skip connection between convolutional
layers

e Four global poolings + high-level
features (homophily + num. pulses)

e Single-layer readout MLP

e All models single-task

Machine Learning in lceCube / Image from [2209.03042]

Input Graph
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Statistics. 1,5] [1,1029] MLP Prediction
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State Graph 2 Node Aggregation

EdgeConv [n, 256]
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State Graph 3

EdgeConv %}
State Graph 4
EdgeConv g

[n, 256]

for j in range(num_nodes):

k
n,h] k-nn) 7= Zmlp(wj,zj _ $z‘) [n,256] >

[n, 256]
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https://arxiv.org/abs/2209.03042

Performance studies

1. Neutrino vs. muon classification } Neutrino sample purity

2. Track vs. cascade classification ’

3. Neutrino energy reconstruction . Oscillation analysis binning
4. Neutrino zenith reconstruction J

5. Impact on oscillation contours } Oscillation analysis sensitivity
6. Robustness to systematic uncertainties } Robustness of 1



Neutrino vs. muon classification

Motivation

Atmospheric muons constitute the largest
background. Identifying neutrinos among these are
essential to a pure signal.

ML task
Binary classification of muon vs. neutrino events.

Result
e At fixed background rejection, DynEdge improves
signal efficiency by 18%, vs. in-use BDT.
e At signal efficiency, DynEdge increases muon
background rejection by > x8.

Machine Learning in lceCube / Figure modified from [2209.03042]
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https://arxiv.org/abs/2203.02303
https://arxiv.org/abs/2209.03042

Tracks vs. cascade classification — 2/6

Motivation T/C
IceCube is not sensitive to individual neutrino flavours,
but uses “track” and “cascade”-like events and proxy
categories. These are crucial for oscillation

H
measurements, which rely on flavour identification to g
measure, e.g., muon neutrino disappearance. :%U
ML task 3
. e , =
Binary classification of track- vs cascade-like events. DT z
auc: 0.671 [ 0-2
Result ____ Dynedge
AUC: 0.713

About 6% improvement in ROC AUC, cf. in-use BDT, , , : —L 0.0

yielding significantly cleaner “PID” bins. 0.0 02 04 06 08 10
False Positive Rate
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https://arxiv.org/abs/2203.02303
https://arxiv.org/abs/2209.03042

Neutrino energy reconstruction — 3/6

Jey1eq suesw Jebie

Motivation 200 dynedge 7
Oscillation analyses are binned in energy, meaning S dynedge ¢
that improved energy resolutions leads to sharper 8. Retro 7
oscillation measurements. 5 Retro ¢
© 125 A
ML task éloo .
1D regression using log-cosh loss in log, (E/GeV). & s
Relative improvements vs. RETRO are measured 2
according to the 68%-—inter-percentile range of the ik
residuals in E. 25 1
Result S N
Average improvement in resolution of around 20% s %7
in the energy range relevant for oscillation g 07
measurements 20 -
(1 GeV < E < 100 GeV, or 0 < log, (E/GeV) < 2) 2 _40 | , | | ,

&
o

0.5 1.0 1.5 2.0 2.5 3.0

Energy (logl0 GeV)
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https://arxiv.org/abs/2209.03042

Neutrino zenith reconstruction

Motivation

Oscillation analyses are binned in distance, which for
atmospheric neutrinos corresponds to the zenith
angle (i.e., angle wrt. the horizon). This means that
improved zenith resolutions leads to sharper
oscillation measurements.

ML task
1D regression using von Mises-Fisher loss to quantify
uncertainty through Gaussian approximation.

Result

Average improvement in resolution of around 20%
in the energy range relevant for oscillation
measurements (E < 100 GeV, or log, ,(E/GeV) < 2)

Machine Learning in lceCube / Figure modified from [2209.03042]
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https://arxiv.org/abs/2209.03042

Impact on oscillation contours — 5/6

Background

1e—3 Sensitivity (Simplified Analysis)
IceCube uses an analysis software called PISA for 254 PiliftiTaTy = GNN 90 % CL
. . .. . Likelihood 90 % CL
oscillation analyses. By providing energy, zenith and 252
track vs. cascade predictions, PISA can produce the o

corresponding oscillation contours. This can be used
to produce simplified oscillation contour that ignore
systematic uncertainties, thereby isolating the impact
of different reconstruction algorithms.

Am?,[eV?]
(3]
'
[«)]

Assumed
Result =407 Zin(en)z =g‘253 S IceCube Simulation
Improvements seen on this plot corresponds to an papire = 2457ede : : ; :
o . 0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.575 0.600
additional 2.5 detector-years, or 20% in terms of sin?(623)
area. Lower estimate of GNN impact on physics
results.
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https://github.com/icecube/pisa
https://indico.kps.or.kr/event/30/contributions/785/

Robustness to systematic uncertainties

Motivation

With complex deep learning models acting on
low-level inputs, there may be a (healthy) fear that
they “overfit” patterns in the training data, and do not
extrapolate well to unseen data (e.g., variations under
systematic uncertainties).

Result

Almost identical behaviour to RETRO, which is entirely
based on physically inspired modelling. This suggests
that the GNNs does not seem to introduce a greater,
or less intuitive, dependence on systematic
uncertainties.

Machine Learning in lceCube / Figure modified from [2209.03042]
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https://arxiv.org/abs/2209.03042

Recap

e GNNs provide significant improvement in performance over alternative
approaches, both likelihood-based and ML-based.

— Increase sensitivity of e.g. oscillations analyses.

e GNNs provide speed-ups over likelihood-based reconstruction by several
orders of magnitude.

— Deploy high-resolution reco. at near-real time, early in analysis chain

e Seamless to extend to other detector / DOM configurations using same set
of components.

— Can support any upgrades to, and extensions of, the lceCube
experiment.

Machine Learning in IlceCube
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Future research directions

Currently done:

e Per-event classification and regression
e Per-node (pulse, OM) classification and regression

Future directions:

e Physics-informed GNNs
Segmentation of overlapping events
Adversarial training / domain adaptation for mitigation of data/MC differences and parametrised
systematic uncertainties

e GNN explainability

e Anomaly detection

e [tc.

Machine Learning in IlceCube
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3. Ways of working with ML in physics



J Spicy take

In experimental particle physics,
machine learning only has real value
when used on experimental data.

Machine Learning in IlceCube
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The challenge with machine learning in physics

Challenge Risk
& Developers may have little ML experience X Brittle, suboptimal solutions
4y Siloed development, often from scratch X Time spent on “boilerplate” instead of physics

tensorflow.keras

Machine Learning in IceCube 38



We’'re working on very related problems

Similar detectors, data, physics processes, deployment setting, end-users, etc.

[2101.11589]

Task

Particle ID
Energy reco.
Pointing reco.
Vertex position
Noise cleaning
Etc.

Choma et al.

Machine Learning in IlceCube

X

Y Low-energy

Physics process Regime

Noise

Y High-energy

“Zoo” of use cases not solved holistically

Detector

lceCube-86
DeepCore
Upgrade
Gen-2

Etc.
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Potential for new ways of working with ML in physics

Potential Outcome
e Address “zoo” of ML use cases holistically e More time for physics
e Collaboration between individual use cases e Better, more reliable results
e Using validated, best-practices code e Contributions of individual ML developers

has a broader, lasting impact in the
collaboration

e Efficient software/ML development workflows

Proposition
GratheT e Reusable GNN components for plug-and-play ML
ﬁj;i‘iﬁ,’nﬂ‘?‘;ﬁ;@i;\’gog‘;zjf ;eoonsmcﬁon e All components for end-to-end ML pipeline (data — prod.)

O icecube/graphnet e \Validated code, following best practices

-l graphnet-team e Applicable across all of IceCube + other experiments
.. -
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https://github.com/icecube/graphnet
https://join.slack.com/t/graphnet-team/signup

Factoring out ML from physics

Training data Inference data Deployment Predictions data

2
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|
()] Domain-spec. Domain-spec. Reconstruction chain Domain-spec.
% format format format
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2 Model training &

g &
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ModelConfig
Configuration

9 Generic format l / Model artifact —| Container
I Trainer
g Training
-
2

7 \ GraphNeT

i Graph Neural Networks for
Run log Model registry Neutrino Telescope Event Reconstruction
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GraphNeT in a nutshell

Modularised, plug-and-play ML components for any use case.

Input GraphBuilder Detector GNN

A modular framework for building graph neural networks in neutrino telescope experiments

Machine Learning in IceCube

Task
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GraphNeT in a nutshell

Machine Learning in IlceCube

graphnet (
EuclideanGraphBuilder GraphBuilder,
IceCubeUpgrade Detector,
DynEdge_V2 GNN,
EnergyReconstruction Task,
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...Ideally

Machine Learning in IlceCube

graphnet Model

model = Model.from_pretrained(

)
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Collaboration impact
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Summary

e What IceCube is, what it does, and how it has traditionally operated.
e How more standard ML has been used in IcCube and to what effect.
e How effective GNNs are in IceCube and similar experiments

e How to optimise the impact of ML on physics through new ways of working.

Machine Learning in IlceCube
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Appendix



Why a platform approach to ML may work for lceCube

General-purpose exps. at CERN

Optical neutrino telescopes like IceCube

Detector

Several different detection principles and
detectors used

Same basic detection principle + devices used
across all sub-detectors

Reconstruction
tasks

Myriad of reco tasks: PID and properties for
most SM particles + dedicated BSM reco., each
possibly leveraging multiple sub-detectors

Few reconstruction tasks: PID + few properties
only for neutrinos and muons

Potential for
synergy

The various performance groups operate on
different inputs with different end goals. Hard to
unify efforts across these groups. However, with
the advent of particle or unified flow objects,
which tries to provide a unified representation of
all “particles” at the reconstruction-level,
perhaps this could become (more) feasible —
and perhaps solvable within a GNN paradigm.

Machine Learning in IlceCube

Simplistically, all analysis rely on a large sample
of high-purity neutrino events (excl. atm. muons
+ noise), with precise flavour ID (track/cascade),
energy, and pointing.

Large physics impact (no. analysis) from
improving central reconstruction. Pre-trained
models have high utility.
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