
1

QUDA: Getting more QCD out of your GPU
Mathias Wagner | Efficient simulations on GPU hardware 2022

2

QUDA
• Effort started at Boston University in 2008, now in wide use as the GPU backend for

BQCD, Chroma, CPS, MILC, TIFR, tmLQCD, etc.
• Provides:

— Various solvers for all major fermionic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation

• Maximize performance
– Exploit physical symmetries to minimize memory traffic
– Mixed-precision methods
– Autotuning for high performance
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR)
– Multigrid solvers for optimal convergence Multi-source solvers
– Strong-scaling improvements

• Portability
– Started on NVIDIA GPUs with CUDA (“QCD on CUDA”)
– Added support for AMD through HIP (in current develop branch)
– Ongoing work for Intel through SYCL and OpenMP Offload (open PR, work ongoing)

http://lattice.github.com/quda

3

QUDA CONTRIBUTORS

! Buck Babich (NVIDIA)
! Simone Bacchio (Cyprus)
! Kip Barros (LANL)
! Rich Brower (Boston University)
! Nuno Cardoso (NCSA)
! Kate Clark (NVIDIA)
! Michael Cheng (Boston University)
! Carleton DeTar (Utah University)
! Justin Foley (Utah -> NIH)
! Joel Giedt (Rensselaer Polytechnic Institute)
! Arjun Gambhir (LBL)
! Steve Gottlieb (Indiana University)
! Kyriakos Hadjiyiannakou (Cyprus)
! Dean Howarth (LBL)
! Xiao-long Jin (ANL)
! Bálint Joó (ORNL)
! Hyung-Jin Kim (BNL -> Samsung)

! Bartek Kostrzewa (Bonn)
! James Osborn (ANL)
! Claudio Rebbi (Boston University)
! Eloy Romero (William and Mary)
! Hauke Sandmeyer (Bielefeld)
! Guochun Shi (NCSA -> Google)
! Mario Schröck (INFN)
! Alexei Strelchenko (FNAL)
! Jiqun Tu (NVIDIA)
! Carsten Urbach (Bonn)
! Alejandro Vaquero (Utah University)
! Mathias Wagner (NVIDIA)
! André Walker-Loud (LBL)
! Evan Weinberg (NVIDIA)
! Frank Winter (Jlab)
! Yi-bo Yang (CAS)
! 🔜 Your name here ?

10+ years - lots of contributors

4

DO MORE SCIENCE

Faster and / or more hardware (strong scaling)
More bandwidth

Lower latencies
More efficient use of hardware
More work with the same data

Reduce time to solution

5

MAPPING THE DIRAC OPERATOR TO GPUS

• Finite difference operator in LQCD is known as Dslash
• Assign a single space-time point to each thread

V = XYZT threads, e.g., V = 244 => 3.3x106 threads

• Looping over direction each thread must
– Load the neighboring spinor (24 numbers x8)

– Load the color matrix connecting the sites (18 numbers x8)

– Do the computation

– Save the result (24 numbers)

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity
•

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

Dx,x0 =
x x

x

x−

x−

U x

U
x

μ

μ

ν

X[0]

X[1]

6

ANNOUNCING H100

HIGHEST AI AND HPC PERFORMANCE
4PF FP8 (6X)| 2PF FP16 (3X)| 1PF TF32 (3X)| 60TF FP64 (3X)

3TB/s (1.5X), 80GB HBM3 memory

TRANSFORMER MODEL OPTIMIZATIONS
6X faster on largest transformer models

HIGHEST UTILIZATION EFFICIENCY AND SECURITY
7 Fully isolated & secured instances, guaranteed QoS

2nd Gen MIG | Confidential Computing

FASTEST, SCALABLE INTERCONNECT
900 GB/s GPU-2-GPU connectivity (1.5X)

up to 256 GPUs with NVLink Switch | 128GB/s PCIe Gen5

Unprecedented Performance, Scalability, and Security for Every Data Center

Custom 4N TSMC Process | 80 billion transistors

7

SINGLE GPU PERFORMANCE
Wilson Dslash Kernel

G
Fl

op
/s

0

1,000

2,000

3,000

4,000

Tesla
2008

Fermi
2010

Kepler
2012

Maxwell
2014

P100
2016

V100
2017

A100
2020

H100
2022

Code from 2008 runs unchanged*
(rewritten in 2019 - same perf

better maintainability)

Wilson Dslash, single precision

fa
st

er

8

EFFICIENT USE OF BANDWIDTH

9

SINGLE GPU PERFORMANCE
HISQ stencil (MILC, A100-80)

NVIDIA A100,
CUDA 11.1,
GCC 11.5

~2350 GB/s

~2400 GB/s

~2400 GB/s

G
FL

O
PS

0

1000

2000

3000

4000

L

8 12 16 20 24 28 32 36 40

half single double

10

SINGLE GPU PERFORMANCE
Wilson-clover stencil (Chroma, A100-80)

NVIDIA A100,
CUDA 11.1,
GCC 11.5

~2400 GB/s

~2700 GB/s

~2700 GB/s

G
FL

O
PS

0

1500

3000

4500

6000

L

8 12 16 20 24 28 32 36 40

half single double

11

IEEE FLOATING-POINT NUMBERS

FP32
32-bits per real

24-bit mantissa => Precision

8-bit exponent => Range

ϵ ∼ 5 × 10−8

∈ [1 × 10−38, 3 × 1038]

struct float32_t {
 unsigned int mantissa : 23;
 unsigned int exponent : 8;
 unsigned int sign : 1;
};

FP64
64-bits per real

53-bit mantissa => Precision

8-bit exponent => Range

ϵ ∼ 1 × 10−16

∈ [2 × 10−208, 2 × 10308]

12

QUDA “HALF” PRECISION

Gauge Field
Element range
No need to store exponent
Store the matrix elements in 16-bit fixed-point

Fermion fields
No a priori bound on the elements range
For each site vector store max element to set range

Perform computation in FP32

16-bit local precision with global FP32 range
cf IEEE FP16:

∈ [−1,1]

ϵ ∼ 3 × 10−5

ϵ ∼ 5 × 10−4

struct vector3 {
 int16_t v[6];
 float max;
};

struct matrix {
 int16_t v[18];
};

Staggered fermion

3x3 Link matrix

13

MIXED PRECISION
Using your bits wisely

do
ub

le

do
ub

le-
sin

gle

do
ub

le-
ha

lf

0.0 5.0 10.0 15.0 20.0 25.0

solution time in siterations

tr
ue

 r
es

id
ua

l (
L 2

 n
or

m
)

MILC/QUDA HISQ CG, mass = 0.001 => ~106κ MILC/QUDA HISQ CG solver

Tesla V100,
CUDA 10.1,
GCC 7.3,
QUDA 1.0

14

MIXED-PRECISION CG

1x10-12

1x10-10

1x10-8

1x10-6

0.0001

0.01

1

0 2000 4000 6000 8000 10000 12000 14000 16000

double
double-single
double-half

double-half alt

1x10-11

1x10-10

1x10-9

12500 13000 13500 14000 14500 15000 15500

double
double-single
double-half

double-half alt

double-half
• Reliable update: periodic

replacement of the residual with
true residual in high precision

• Maintain solution vectors in
high precision
• Including the partial accumulator

• When true residual is injected,
re-project the direction vector

• Use Polak-Ribière formula

double-half alt
• Residual replacement strategy of

van der Worst and Ye

15

MORE PRECISION AT CONSTANT BITS
Using your bits even more wisely

struct vector3_half {
 int16_t v[6];
 float max;
};

ϵ ∼ 3 × 10−5

struct spinor3_fp32 {
 float v[6];
};

ϵ ∼ 1 × 10−7

struct spinor_20 {
 int20_t v[6];
 uint8_t exponent;
};

ϵ ≳ 3 × 10−6

struct spinor_30 {
 int30_t v[6];
 uint8_t exponent;
};

ϵ ≳ 2 × 10−9

128 bits

192 bits

16

HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

HISQ Dslash element-by-element absolute
 deviation CDF vs FP64 reference

17

HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

HISQ Dslash element-by-element absolute
 deviation CDF vs FP64 reference

18

HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

HISQ Dslash element-by-element absolute
 deviation CDF vs FP64 reference

19

HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

HISQ Dslash element-by-element absolute
 deviation CDF vs FP64 reference

20

HOW WELL DOES IT WORK?
Precision: gauge / fermion / compute

G
FL

O
PS

0

275

550

825

1100

Category Axis

Precision

16-bit / 16 bit / FP32
16-bit / 20-bit / FP32
FP32 / FP32 / FP32
32-bit / 30-bit / FP32
32-bit / 30-bit / FP64
FP64 / FP64 / FP64

HISQ Dslash Performance
V = 324, Quadro GV100

HISQ Dslash element-by-element absolute
 deviation CDF vs FP64 reference

Gain two orders of magnitude in precision with no performance cost

21

BICGSTAB(4)
HISQ, V = 363x72, β = 6.3, m = 0.001

Iterations Time (s)

pure double 26064 307

double-single 27308 159

double-int30 26580 150

double-int20 29336 106

double-half 67552 247

22

MULTI-SHIFT CG SOLVER

Used for RHMC and multi-mass solver propagators

Mixed-precision multi-shift CG
Essentially mixed-precision CG on shift 0
Shifted iterated residuals drift away true residual
Refine each shifted system to correct for lack of residual collinearity
Many additional iterations can be required

Prior optimal QUDA strategy
double-single multi-shift-CG
double-half per shift refinement

23

MULTI-SHIFT SOLVER
HISQ RHMC, V = 363x72, β = 6.3, m = 0.001, 11 shifts

Residual history of
CG refinement
double-single-half

Residual history of
CG refinement
double-int30-int20

Multi-shift CG
Residual history for shift 0

Significant reduction in
refinement iterations

prelim
inary

24

DO EVEN MORE WITH YOUR BITS?
Multiple RHS

 63

MULTIPLE RIGHT-HAND SIDES
G

Fl
op

/s

rhs

483x12, HISQ, single precision, one code

0

750

1,500

2,250

3,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Volta (2017) Pascal (2016) Maxwell (2014) Kepler (2012) Fermi (2010)

2.5x

3.5x

25

GPU-CENTRIC COMMUNICATION

26

MULTI-GPU PROFILE
overlapping comms and compute

324 local volume,
single precision

P2P copies

Interior kernel
Packing kernel

Halo kernels
t,z,y

D
G

X-
1,

1x
2x

2x
2

pa
rt

it
io

ni
ng

27

FASTER ON A GPU

Faster GPU
Less Bits
More GPU
-> Shorter Kernels

Less time to communicate
-> Need more network

How do we scale that?Multi GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011

28

NVLINK SWITCH SYSTEM

Purpose Built High Performance NVLink Network For Up to 256 GPUs

4th GEN NVLINK
900 GB/s from 18x25GB/sec bi-directional ports

GPU-2-GPU connectivity across nodes

3rd GEN NVSWITCH
All-to-all NVLink switching for 8-256 GPUs

Accelerate collectives - multicast and SHARP

NVLINK SWITCH
128 port cross-connect based on NVSwitch

H100 CLUSTER (1 SCALABLE UNIT)
57,600 GB/s all-to-all bandwidth

32 servers | 18 NVLink switches | 1,152 NVLink optical cables

29

STRONG SCALING PROFILE
overlapping comms and compute

P2P copies
Interior kernel

Packing kernel Halo kernels
 (fused)

164 local volume, half
precision

D
G

X-
1,

1x
2x

2x
2

pa
rt

it
io

ni
ng

30

NVSHMEM: OpenSHMEM FOR CLUSTERS OF NVIDIA GPUS

❖ Compute on GPU

❖ Communication from GPU

Benefits:
❑ Eliminates offload latencies

❑ Improves overlap of computation and
communication

❑ Hides latencies using multithreading

❑ Easier to express scalable algorithms with
inline communication

NVSHMEM’s Partitioned Global Address Space
(PGAS) model improves performance while
making it easier to program

31

FUSED DSLASH + PACKING KERNEL

Packing Interior

pack_blocks

Exterior (Halo)

interior_blocks = grid_dim - pack_blocks

nvshmem_signal
for each
direction

in
te

ri
or

+p
ac

k
ke

rn
el

ha
lo

 k
er

ne
l

nvshmem_wait_until for packed data

32

NVSHMEM + FUSING KERNELS
no extra packing and barrier kernels needed

Barrier + Fused HaloInterior + Pack + Flag kernel

164 local volume,
half precision

D
G

X-
1,

1x
2x

2x
2

pa
rt

it
io

ni
ng

33

CAN WE GO FURTHER ?

`

One kernel to rule them all !
Communication is handled in the kernel and latencies are hidden.

34

FINE-GRAINED SYNCHRONIZATION

Need replacement for kernel boundaries

Packing is independent of interior

interior and exterior update on boundary
→ possible race condition

use cuda::atomic from libcu++

libcu++ gives us std::atomic in CUDA

#include <atomic>
std::atomic<int> x;

#include <cuda/std/atomic>
cuda::std::atomic<int> x;

#include <cuda/atomic>
cuda::atomic<int, cuda::thread_scope_block> x;

35

FULLY FUSED DSLASH KERNEL

Packing Interior

pack_blocks interior_blocks = grid_dim - pack_blocks - exterior_blocks

nvshmem_signal
for each
direction

Exterior (Halo)

exterior_blocks

atomic wait for
interior

nvshmem_wait_until

atomic flag set by last block

36

FULLY FUSED KERNEL

` 164 local volume,
half precision

D
G

X-
1,

1x
2x

2x
2

pa
rt

it
io

ni
ng

über kernel (packing + interior + exterior)

CPU now only launches
the dslash kernel

37

LATENCY REDUCTIONS

0

400

800

1,200

1,600

2,000

IPC
 co

pie
s

NV
SH

MEM
 ke

rn
el

fu
sio

n

NV
SH

MEM
 üb

er
 ke

rn
el

DGX-1 V100,164 local volume, Wilson, half precision, 1x2x2x2 partitioning
G

Fl
op

/s
 p

er
 G

PU

38

SELENE (DGX A100-80) STRONG SCALING
Global Volume 643x128, Wilson-Dslash

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

8 16 32 64 128 256 512

MPI double NVSHMEM double
MPI single NVSHMEM single
MPI half NVSHMEM half

G
Fl

op
/s

#GPUs

local lattice: 164

39
INVERTER SCALING

40

CONJUGATE GRADIENT
MPI + IPC

Lot of CPU activity and
synchronizations

Dslash Dslash
BLAS /
Reduction

41

CONJUGATE GRADIENT
NVSHMEM

Dslash Dslash

BLAS /
Reduction

Synchronize GPU and CPU
for MPI reductions

42

REDUCTIONS

Need to synchronize the device and host when doing a reduction

Traditional QUDA method
Kernel does per-device reduction writing result to sysmem
Synchronize host and device

Idea: use the reduced value(s) themselves as the host-device synchronization medium
Use libcu++’s heterogeneous atomics
Initialize atomic to some initial value on host

1.Launch reduction kernel
2.Reduced values are written as heterogeneous atomics to sysmem
3.Host polls on heterogeneous atomic values for completion

Host-Device Synchronization

43

CONJUGATE GRADIENT
NVSHMEM + Heterogenous Atomics

Dslash Dslash

BLAS /
Reduction

No explicit synchronizations,
but still MPI on the CPU

44

RHMC SCALING

45

MILC NERSC BENCHMARK OVERVIEW

• MILC NERSC Benchmark comes in 4 lattice sizes
• small 183x36, medium 363x72, large 723x144, x-large 1443x288

• Benchmark runs the RHMC algorithm
• Dominated by the multi-shift CG sparse linear solver (stencil operator)

• Also have auxiliary “Force” and “Link” computations

• Since 2012 MILC has built-in QUDA support
• Enabled through a Makefile option

• All time-critical functions off loaded to QUDA

46

MILC HMC SCALING ON SELENE

Running with MPI

other part scales reasonably
(not limited by communication)

solver part needs improvements

NERSC LARGE BENCHMARK 723x144

0

400

800

1,200

1,600

2,000

32 64 128 256 512

other solver

ti
m

e
[s

]

#GPUs

47

MILC HMC SCALING ON SELENE

Running with MPI

other part scales reasonably
(not limited by communication)

solver part needs improvements

NERSC LARGE BENCHMARK 723x144

0

400

800

1,200

1,600

2,000

32 64 128 256 512

MILC non-QUDA QUDA other QUDA solver

ti
m

e
[s

]

#GPUs

48

MILC SOLVER SCALING ON SELENE

mixed precision methods:
lower precisions harder to scale
NVSHMEM crucial for mixed precision

QUDA solver in MILC
mixed precision multishift: double-single
mixed precision refinement: double-half

sweet spot at 256 GPUs:
~20% less time in solver

NERSC LARGE BENCHMARK 723x144

0

200

400

600

800

1,000

32 64 128 256 512

MPI NVSHMEM

ti
m

e
[s

]

#GPUs

solver only

49

MILC SOLVER SCALING ON SELENE

mixed precision methods:
lower precisions harder to scale
NVSHMEM crucial for mixed precision

at 256 GPUs:
NVSHMEM recovers expect almost 2x
benefit of mixed precision

NERSC LARGE BENCHMARK 723x144

ti
m

e
[s

]

#GPUs

0

200

400

600

800

1,000

256

MPI NVSHMEM MPI double

solver only

1.8x1.5x

50

MILC SOLVER SCALING ON SELENE

Full benchmark

>10% gains for runtime

NERSC LARGE BENCHMARK 723x144

0

400

800

1,200

1,600

32 64 128 256 512

283
359

522

860

1,577

324
414

552

980

1,600

MPI NVSHMEM

ti
m

e
[s

]

#GPUs

CHROMA WILSON-CLOVER HMC
• Dominated by QUDA Multigrid

• Few solves per gauge configuration, can be
bound by “heavy” (well-conditioned) solves

• Evolve and refresh coarse space as the gauge field
evolves

• Mixed precision an important piece of the puzzle
• Double – outer solve precision

• Single – GCR preconditioner

• Half – Coarse operator precision

• Int32 – deterministic parallel coarsening

• Wilson-clover MG implemented in QUDA, hooked
into Chroma ; support in Grid

• Latest and greatest: Wilson-clover NVSHMEM
plus tensor-core-accelerated setup

Chroma w/ QDP-JIT and QUDA, ECP FOM data,
V=643x128 sites, mπ ~172 MeV, (QDP-JIT by F. Winter,

Jefferson Lab)

Original figure credit Balint Joo

185

Selene (128x A100,
April 2021)

Hardware,
NVSHMEM,

Tensor Cores
2.11x

Lattice 2021

52

CHROMA WILSON-CLOVER HMC SCALING

2 trajectories

other (non QUDA)
QUDA multigrid (MPI/QMP)
QUDA multishift (MPI/QMP)

Chroma dominated by Multigrid solves

MPI timing breakdown on Selene (Lattice 2021)

ti
m

e
[s

]

#GPUs

0

250

500

750

1000

32 64 128 256 512

other Multigrid Multishift

53

NVSHMEM FOR MULTIGRID
(COARSE DSLASH)

54

CHROMA WILSON-CLOVER HMC SCALING
Improvements 2021 (MPI) to 2022 (NVSHMEM)

Q
U

D
A

in
ve

rt
 t

im
e

[s
]

128 x NVIDIA A100 (Selene)

0

75

150

225

300

MPI NVSHMEM NVSHMEM MG

41
41

46

156
176

194

Multigrid Multishift

0

200

400

600

800

1,000

1,200

8x4x4x4 4x2x2x2

MPI NVSHMEM

Co
ar

se
 D

sl
as

h
Fl

op
s

55

CHROMA WILSON-CLOVER HMC SCALING

Time for full HMC trajectory
NVSHMEM for Multigrid enabled

Same hardware - Same algorithm

Up to ~20% speedup

Improvements 2021 (MPI) to 2022 (NVSHMEM)

ti
m

e
[s

]

#GPUs

0

125

250

375

500

32 64 128 256 512

88105

149

237

425

109
127

176

264

446

MPI NVSHMEM MG

56

CHROMA ECP BENCHMARK
Multiplicative Speedup

0

1,000

2,000

3,000

4,000

5,000

Tit
an

(4
09

6 K
20

)

Su
mmit

(1
28

x V
10

0)
Tit

an

(5
12

x K
20

)

Su
mmit

(1
28

x V
10

0,
 N

ov
 18

)

Su
mmit

(1
28

x V
10

0,
 M

ar
 19

)

Se
len

e

 (1
28

x A
10

0,
 Ap

r 2
1)

Ju
wels

 B
oo

ste
r

(1
28

x A
10

0-
40

, N
ov

 21
)

Se
len

e

(1
28

x A
10

0,
 Au

g 2
2)

149166185
392439

974

1,878

4,006
Multigrid

https://github.com/lattice/quda/wiki/Chroma-ECP

57

MORE QCD FROM YOUR GPU

QUDA and GPUs are here to stay: 10+ years on NVIDIA GPUs

Mixed and custom precisions to optimally match needs
Algorithmic improvements
NVSHMEM delivers RHMC scaling benefits

up to 20% reduction in time to solution

Watch out for more to come …
… and join the flywheel

Multiplicative speedup from hardware and software

Sp
ee

du
p

1

10

100

1000

G
FL

O
PS

0

500

1000

1500

2000

2500

3000

2008 2010 2012 2014 2016 2018 2020

Wilson FP32 GFLOPS Speedup

0

1,000

2,000

3,000

4,000

5,000

Tit
an

(4
09

6 K
20

)

Su
mmit

(1
28

x V
10

0)
Tit

an

(5
12

x K
20

)

Su
mmit

(1
28

x V
10

0,
 N

ov
 18

)

Su
mmit

(1
28

x V
10

0,
 M

ar
 19

)

Se
len

e

 (1
28

x A
10

0,
 Ap

r 2
1)

Ju
wels

 B
oo

ste
r

(1
28

x A
10

0-
40

, N
ov

 21
)

Se
len

e

(1
28

x A
10

0,
 Au

g 2
2)

149166185
392439

974

1,878

4,006

https://github.com/lattice/quda/wiki/Chroma-ECP

