
PULP PLATFORM
Open Source Hardware, the way it should be!

http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Luca Benini
<lbenini@iis.ee.ethz.ch,luca.Benini@unibo.it>

The Rise of Tightly-Coupled Processor Clusters

Computing is Power Bound: HPC

100 EFLOPS

10 EFLOPS

1 EFLOPS

100 PFLOPS

10 PFLOPS 2 nJ/FLOP

1 PFLOPS 200 pJ/FLOP

100 TFLOPS 20 pJ/FLOP

10 TFLOPS 2 pJ/FLOP

1 TFLOPS 0.2 pJ/FLOP

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
26

20
27

20
28

20
29

20
30

20
31

20
32

20
33

Copyright © European Processor Initiative 2019. EPI Tutorial/Barcelona/17-07-2019
HPC Performance Energy / Op (for a 20MW budget)

HPC: 10x every 4 years

x10 every 4 years

/10 every 4 years

2

Frontier
1.1EFLOP
19.2pJ/FLOP

Computing is Power Bound: ML

3

AI training: 10x every year!!!

Sevilla 22: arXiv:2202.05924

Machine Learning (training): 10x every 2 years

(Largest datacenter <150MW)

Technology Scaling?
TSMC, ISSCC21

@ iso-area 1.24x power ↑

4
Energy Efficiency (𝟏𝟏

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏�𝐓𝐓𝐓𝐓𝐓𝐓𝐏𝐏
) 10x every 12 years…

Chiplets?

5

Good news for Cost+Density, no silver buller for Energy

AMD, ISCAS22

Efficient Architecture: Heterogeneous+Parallel
Decide

Compute

<>
6

Heterogeneous + Parallel… Why?

7

 Processors can do two kinds of useful work:

 Today’s workloads are dominated by “Compute”:
 Tons of data, few (as fast as possible) decisions based on the computed values,
 “Data-Oblivious Algorithms” (ML, or better DNNs are so!)
 Large data footprint + sparsity

Compute (plough through numbers)
 Modulate flow of data
 Embarassing data parallel:
 Don’t think too much
 Plough through the data

(throughput is king)
 Few decisions

Lots of number crunching

Decide (jump to different program part)
 Modulate flow of instructions
 Mostly sequential decisions:
 Don’t work too much
 Be clever about the battles you pick

(latency is king)
 Lots of decisions

Little number crunching

How to design an efficient “Compute” fabric?

Compute Efficiency for PE, Cluster, SoC

8

Reg

RegFile

PE
core

L1

PE
core

PE
core

PE
core

PE
core

L0:Operand Memory
Latency=1
Density=1

Private

L1: Tightly Coupled DM
Latency<10
Density≈10

Shared

Cluster

Cluster Cluster Cluster

Cluster Cluster Cluster

L2

L2: Main Memory
Latency>100
Density≈100

Shared, Remote

From/To L1

DMA
From/To L2
& Others

PE: Snitch, a Tiny RISC-V Control Core
A versatile building block

9

 Simplest core: around 20KGE
 Speed via simplicity (1GHZ+)
 L0 Icache/buffer for low energy fetch
 Shared L1 for instruction reuse (SPMD)

 Extensible Accelerator port
 Minimal baseline ISA (RISC-V)
 Extensibility: Performance through ISA

extensions (via accelerator port)

 Latency-tolerant Scoreboard
 Tracks instruction dependencies
 Much simpler than OOO support!

L0
 IC

ac
he

Dependencies

Scoreboard

Snitch PE: ISA Extension for efficient “Compute”

10

 How can we remove the Von Neumann Bottleneck?

 Targeting “compute” code

double sum = 0;
for (int i = 0; i < N; ++i) {
sum += A[i] * B[i];

}

fld ft0, 0(a1)
fld ft1, 0(a2)
addi a1, a1, 8
addi a2, a2, 8
fmadd.d fa0, ft0, ft1, fa0
bne a1, a3, -5

70 pJ
70 pJ
50 pJ
50 pJ
80 pJ
50 pJ

Memory access, operation, iteration control – can we do better?
Note: memory access (>1 cycle even for L1) need latency tolerance for LD/ST

Stream Semantic Registers
LD/ST elision

11

 Intuition: High FPU utilization ≈ high energy-efficiency

 Idea: Turn register read/writes into implicit memory
loads/stores.

 Extension around the core’s register file

 Address generation hardware

 Increase FPU/ALU utilization by ~3x up to 100%

 SSRs ≠ memory operands
 Perfect prefetching, latency-tolerant

Floating-point Repetition Buffer
Remove control flow overhead in compute stream

12

 Programmable micro-loop buffer

 Sequencer steps through the buffer,
independently of the FPU

 Integer core free to operate in parallel:
Pseudo-dual issue

 High area- and energy-efficiency

2 mem. acc. (“[…]”)
8 reg. acc.

2 mem. acc. (“”)
4 reg access
(no load instructions)

FMAdd R2, SSR0, SSR1
LDS R2, [R0]
LDS R3, [R1]
FFMA R4, R2, R3, R2

GPU Assembly Snitch Assembly

SNITCH vs GPU PE
 Snitch dissipates significant fraction of power in its FPU (more is better):
 GPUs not much (5% reported in [1])

 Compared to NVIDIA GPU :
 Register file in GPU holds registers and thread-local data
 Each register read/write is an SRAM access
 Data and register accesses are in SRAM

= 10 SRAM hits total = 2 SRAM hits total

13

Efficient PE architecture in perspective

14

1. Minimize control overhead Simple, shallow pipelines
2. Reduce VNB amortize IF: SSR-FREP + SIMD (Vector processing)
3. Hide memory latency non-blocking LD/ST+dependency tracking
4. Highly expressive, domain-specific instructions with SPUs

15

Reg

RegFile

PE
core

L1

PE
core

PE
core

PE
core

PE
core

L0:Operand Memory
Latency=1
Density=1

Private

L1: Tightly Coupled DM
Latency<10
Density≈10

Shared

Cluster

Cluster Cluster Cluster

Cluster Cluster Cluster

L2

L2: Main Memory
Latency>100
Density≈100

Shared, Remote

From/To L1

DMA
From/To L2
& Others

Compute Efficiency for PE, Cluster, SoC

Tightly-Coupled Processors Clusters

HPC: Ampere’s SP HPE: RamonChips RC64 IoT: Greenwave’s GAP9

Pervasive Architectural Pattern for Data-Parallel Computing!

The Cluster: Design Challenges

17

CLUSTER

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

Mem Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

Mem

Mem

 Low latency access TCDM
 Multi-banked architecture
 Fast logarithmic interconnect

 Fast synchronization
 Atomics
 Barriers

 Efficient PE
 Hide TCDM “residual” latency
 Remove Von Neumann Bottleneck

High speed logarithmic interconnect
P1 P2 P3 P4

B2 B3 B4 B5 B6 B7 B8B1

Routing
Tree

Arbitration
Tree

Processors

Memory
Banks

N+1N N+2 N+3 N+4 N+5 N+6 N+7
N+8

World-level bank interleaving «emulates» multiported mem

A. Rahimi, I. Loi, M. R. Kakoee and L. Benini, "A fully-synthesizable single-cycle interconnection network for Shared-L1 processor clusters," 2011 Design, Automation & Test in Europe, 2011, pp. 1-6.18

Latency: 2 cycles + stalls for banking conflicts

Fast synchronization and Atomics

19

CLUSTER

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

Mem Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

Mem

Mem

Event
Unit

 Atomic instructions
 Leverage fast memory access
 Based on per-bank atomic adapters

 Fast synchronization
 Atomics for generic primitives
 Accelerating barriers in HW (make

the common case fast)
 Minimize idle power while waiting

Hardware-Accelerated, Event-Based Barrier

Avoid busy waiting!
Minimize sw synchro. overhead
Efficient fine-grain parallelization

HW
SYNCH

PE3PE2PE1PE0

Private, per core port
single cycle latency
no contention

20F. Glaser, et al, "Energy-Efficient Hardware-Accelerated Synchronization for Shared-L1-Memory Multiprocessor Clusters," in IEEE TPDS, vol. 32, no. 3, pp. 633-648, 1 March 2021.

Barrier: Results

21

 Fully parallel access to SCU: Barrier cost constant

 Primitive energy cost: Down by up to 30x

 Minimum parallel section for 10% overhead in terms of …
 … cycles: ~100 instead of > 1000 cycles
 … energy: ~70 instead of > 2000 cycles

Efficiently Global Data Mover
hide L2main memory latency

22

 64-bit AXI DMA – explicit double-buffered
transfers – better than D$

 Tightly coupled with Snitch (<10 cycles
configuration)

 Operates on wide 512-bit data-bus

 Hardware support to copy 2D shapes

 Higher-dimensionality handled by SW

 Intrinsics/library for easy programming

Snitch
Core

DMA
Backend

DMA
Decoder

2D
Extension

Snitch Cluster Architecture

23

…

Logarithmic Interco

Snitch 0 Snitch 2 Snitch N Snitch
N+1

Multibanked L1 (BF>1)

Shared Instruction Cache

DIV

FPU FPU FPU DMA

SSR SSR SSR

FPU, 87.44

Miscellaneous,
25.26

ICACHE, 4.82

SSR/FREP,
9.52

Integer Core,
4.24

L1 Memory,
47.19

Where does the Energy go?

24

Integer core uses
2% of power

SSR/FREP hardware
uses 5% of power

FPU uses 50% of power

In an 8-core cluster
Inevitable to have local memory
(e.g., GPU/GPU L1 cache, vector register file)

Spending energy where it contributes to the result High Efficiency

Baikonur
The first Snitch-based test chip.

25

Very efficient, versatile, compute cluster! How do we scale?

 Snitch compute cluster:
 8x RV32G Snitch cores
 8x large FPUs
 > 40% energy spent on FPU
 High energy-efficiency of ~80 Gdpflop/s/W
 104 Gspflop/s/W similar to accelerators

 9 mm2 prototype in GF 22FDX
 Testbed for key architectural

components
 Snitch octa-core cluster
 Ariane cores

21142

FPU Regfile RegfileSSR Rest CorePerf Cnt LSULSU

552162496 11 2 1 8

FP SS Sni tch FPU Seq Regs Rest

188

142 21 13 8 4

> 50%

kGE[]

Efficient Cluster architecture in perspective

26

1. Memory pool – efficient sharing of L1 memory
2. Fast and parsimonious synchronization
3. Data Mover + Double buffering – explicitly managed block transfers at the boundary
4. More cores and more memory per cluster… that would be nice!

27

Reg

RegFile

PE
core

L1

PE
core

PE
core

PE
core

PE
core

L0:Operand Memory
Latency=1
Density=1

Private

L1: Tightly Coupled DM
Latency<10
Density≈10

Shared

Cluster

Cluster Cluster Cluster

Cluster Cluster Cluster

L2

L2: Main Memory
Latency>100
Density≈100

Shared, Remote

From/To L1

DMA
From/To L2
& Others

Compute Efficiency for PE, Cluster, SoC

Occamy: a 12LPP+ AI & Stream Computing Chiplet
Silicon implementation of all key IPs (core, Phys, chiplet)

28

Dual-chiplet configuration in 12LP+

• Area: ~70𝐓𝐓𝐓𝐓𝟐𝟐

Chip2chip link
HBM2e memories
Interposer
• 65nm tech, passive
Substrate

From Snitch Cluster

29

8 Snitch compute cores
 Single-stage, small Integer control core

9th Core: DMA
 512 bit data interface
 Efficient data movement

128 kB TCDM
 Scratchpad for predictable memory accesses
 32 Banks

Custom ISA extensions
 Xfrep, Xssr
 New: Xissr sparsity support

1 FPU per Snitch core
 Decoupled and heavily pipelined
 Multi-format FPU (+SIMD)
 New: Minifloat support + SDOTP

To Snitch Group

30

Snitch Group

31

4 Clusters per Group
 Single-stage, small Integer control core

2 AXI Busses
 64-bit narrow interface: config
 512-bit wide interface: DMA

Constant Cache
 D/I-Cache hierarchy

From Snitch Group

32

To Multi-Group

33

Occamy – Chiplet Architecture

34

2 AXI Busses
 64-bit narrow interface: config
 512-bit wide interface: DMA
Peripherals
 Complex address space management
Linux-capable manager core CVA6
6 Groups: 216 cores/die
 4 cluster / group:

 8 compute cores / cluster
 1 DMA core / cluster

 512bit Constant Cache
8-channel HBM2e (8GB)
D2D serial link

Occamy NoC: Efficient and Flexible Data Movement

35

Problem: HBM Accesses are
critical in terms of
 Access energy
 Congestion
 High latency

Instead reuse data on lower
levels of the memory hierarchy
 Between clusters
 Across groups

Smartly distribute workload
 Clusters: DORY framework for tiling

strategy [1]
 Chiplets: E.g. Layer pipelining

Cluster

Group Crossbar

Cluster Cluster

Group Crossbar

Cluster

System Crossbar

HBM Die2Die

… …

[1] Burrello, Alessio, et al. "Dory: Automatic end-to-end deployment of real-world
dnns on low-cost iot mcus." IEEE Transactions on Computers 70.8 (2021):
1253-1268. Big trend today!

Occamy’s C2C Link

36

Occamy Chiplet

37

 GF12, target 1GHz (typ)

 2 AXI NoCs (multi-hierarchy)
 64-bit
 512-bit with “interleaved” mode

 Peripherals

 Linux-capable manager core CVA6

 6 Quadrants: 216 cores/chiplet
 4 cluster / quadrant:

 8 compute +1 DMA core / cluster
 1 multi-format FPU / core

(FP64,x2 32, x4 16/alt, x8 8/alt)

 8-channel HBM2e (8GB) 512GB/s

 D2D link (Wide, Narrow) 70+2GB/s

 System-level DMA

 SPM (2MB wide, 512KB narrow)

Peak 384 GDPflop/s per chiplet – Taped-out in July

Efficient SoC architecture in Perspective

38

1. Multi-cluster single-die scaling strong latency tolerance, modularity
2. NoC for flexible Clus2Clus, Clus2Mem traffic reduce pressure to Main memory
3. Full chiplet architecture: HBM2e, NoC-wrapped C2C, multi-chiplet ready

Back to the cluster… Can we make it Bigger?
 Why?
 Better global latency tolerance if L1 > 2*Latency*Bandwidth
 Easier to program (data-parallel, functional pipeline…)
 Smaller data partitioning overhead

 An efficient many-core cluster with low-latency shared L1
 256+ cores
 1+ MiB of shared L1 data memory
 ≤ 5 cycles latency (without contention)

 Physical-aware design
 WC Frequency > 500 Mhz
 Targeting iso-frequency with small cluster

39

MemPool

Hierarchical Physical Architecture

40

 Tile
 4 32-bit cores
 16 banks
 Single cycle memory access

 Group
 64 cores
 256 banks
 3-cycles latency

 Cluster
 256 cores
 1 MiB of memory (1024 banks)
 5-cycles latency

TopH: Butterfly Multi-stage Interconnect 0.3req/core/cycle

Benchmarks: can we compete with the impossible?

41

 Baseline: idealized TopX
 Fully connected logarithmic crossbar between 256 cores and 1024 banks

 Cycle-accurate RTL simulation
 Matmul
 Multiplication of two 64 × 64 matrices
 2dconv
 2D Convolution with a 3 × 3 kernel
 dct
 2D Discrete Cosine Transform on 8 × 8 blocks in local memory

 TopH has a performance penalty of at most 20%, on all kernels

Energy Analysis (500 MHz, TT, 0.80 V, 25 °C)
 Breakdown of the energy consumption per instruction:

 Local loads consume about as much energy as a mul
 About half of it, 4.5pJ, by the interconnect

 Remote loads: twice the energy of a local load
 Despite crossing the whole cluster, twice!

42
Terapool (1024 cores) seems viable @ 7 cycles latency

MemPool-3D
 Memory-on-Logic implementation of MemPool
 Implementation of MemPool with 1, 2, 4, 8 MiB of L1
 Leading to a higher utilization of the memory die

43

Groups: MemPool-2D vs. MemPool-3D

MemPool-2D

Footprint: 1.000

Footprint: 1.074

Footprint: 1.299

Footprint: 1.572

MemPool-3D

Footprint: 0.665

Footprint: 0.665

Footprint: 0.857

Footprint: 0.737

128 KiB

256 KiB

512 KiB

1 MiB

7% larger Same footprint

14% smaller, despite 8x the L1 capacity!

Similar trends for Wire length and #Buffers
44

Conclusion
 Energy efficiency quest: PE, Cluster, SoC

 Key ideas
 Application specific PEs extensible ISAs (RISC-V!)
 VNB removal + Latency hiding: large OOO processors not needed
 Low-overhead work distribution large “mempool”
 Heterogeneous architecture host+accelerator(s)

 Game-changing technologies
 Chiplets: 2.5D, 3D, (WFI?)
 Computing “at” memory,
 Coming (less than ten years): optical IO

[AMD Naffziger ISCAS22]

[RIKEN Matsuoka MODSIM22] 45

http://pulp-platform.org @pulp_platform

Luca Benini, Alessandro Capotondi, Alessandro Ottaviano,
Alessandro Nadalini, Alessio Burrello, Alfio Di Mauro,
Andrea Borghesi, Andrea Cossettini, Andreas Kurth, Angelo
Garofalo, Antonio Pullini, Arpan Prasad, Bjoern Forsberg,
Corrado Bonfanti, Cristian Cioflan, Daniele Palossi, Davide
Rossi, Davide Nadalini, Fabio Montagna, Florian Glaser,
Florian Zaruba, Francesco Conti, Frank K. Gürkaynak,
Georg Rutishauser, Germain Haugou, Gianna Paulin,
Gianmarco Ottavi, Giuseppe Tagliavini, Hanna Müller,
Lorenzo Lamberti, Luca Bertaccini, Luca Valente, Luca
Colagrande, Luka Macan, Manuel Eggimann, Manuele
Rusci, Marco Guermandi, Marcello Zanghieri, Matheus
Cavalcante, Matteo Perotti, Matteo Spallanzani, Mattia
Sinigaglia, Michael Rogenmoser, Moritz Scherer, Moritz
Schneider, Nazareno Bruschi, Nils Wistoff, Pasquale Davide
Schiavone, Paul Scheffler, Philipp Mayer, Robert Balas,
Samuel Riedel, Sergio Mazzola, Sergei Vostrikov, Simone
Benatti, Stefan Mach, Thomas Benz, Thorir Ingolfsson, Tim
Fischer, Victor Javier Kartsch Morinigo, Vlad Niculescu,
Xiaying Wang, Yichao Zhang, Yvan Tortorella, all our past
collaborators and many more that we forgot to mention

	Slide Number 1
	Computing is Power Bound: HPC
	Computing is Power Bound: ML
	Technology Scaling?
	Chiplets?
	 Efficient Architecture: Heterogeneous+Parallel
	Heterogeneous + Parallel… Why?
	Compute Efficiency for PE, Cluster, SoC
	PE: Snitch, a Tiny RISC-V Control Core�A versatile building block
	Snitch PE: ISA Extension for efficient “Compute”
	Stream Semantic Registers�LD/ST elision�
	Floating-point Repetition Buffer�Remove control flow overhead in compute stream
	SNITCH vs GPU PE
	Efficient PE architecture in perspective�
	Slide Number 15
	Tightly-Coupled Processors Clusters
	The Cluster: Design Challenges
	High speed logarithmic interconnect
	Fast synchronization and Atomics
	Hardware-Accelerated, Event-Based Barrier
	Barrier: Results
	Efficiently Global Data Mover�hide L2main memory latency
	Snitch Cluster Architecture
	Where does the Energy go?
	Baikonur�The first Snitch-based test chip.
	Efficient Cluster architecture in perspective�
	Slide Number 27
	Occamy: a 12LPP+ AI & Stream Computing Chiplet�Silicon implementation of all key IPs (core, Phys, chiplet)
	From Snitch Cluster
	To Snitch Group
	Snitch Group
	From Snitch Group
	To Multi-Group
	Occamy – Chiplet Architecture
	Occamy NoC: Efficient and Flexible Data Movement
	Occamy’s C2C Link
	Occamy Chiplet
	Efficient SoC architecture in Perspective�
	Back to the cluster… Can we make it Bigger?
	Hierarchical Physical Architecture
	Benchmarks: can we compete with the impossible?
	Energy Analysis (500 MHz, TT, 0.80 V, 25 °C)
	MemPool-3D
	Groups: MemPool-2D vs. MemPool-3D
	Conclusion
	Slide Number 46

