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Computing is Power Bound: HPC
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HPC Performance Energy / Op (for a 20MW budget)

HPC: 10x every 4 years 

x10 every 4 years

/10 every 4 years
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Frontier
1.1EFLOP
19.2pJ/FLOP



Computing is Power Bound: ML
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AI training: 10x every year!!! 

Sevilla 22: arXiv:2202.05924

Machine Learning (training): 10x every 2 years 

(Largest datacenter <150MW)



Technology Scaling?
TSMC, ISSCC21

@ iso-area 1.24x power ↑

4
Energy Efficiency ( 𝟏𝟏

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏�𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓
) 10x every 12 years…



Chiplets?
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Good news for Cost+Density, no silver buller for Energy

AMD, ISCAS22



Efficient Architecture: Heterogeneous+Parallel
Decide

Compute

<>
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Heterogeneous + Parallel… Why?
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 Processors can do two kinds of useful work:

 Today’s workloads are dominated by “Compute”:
 Tons of data, few (as fast as possible) decisions based on the computed values, 
 “Data-Oblivious Algorithms”  (ML, or better DNNs are so!)
 Large data footprint + sparsity

Compute (plough through numbers)
 Modulate flow of data
 Embarassing data parallel:
 Don’t think too much
 Plough through the data

(throughput is king)
 Few decisions

Lots of number crunching

Decide (jump to different program part)
 Modulate flow of instructions
 Mostly sequential decisions:
 Don’t work too much
 Be clever about the battles you pick

(latency is king)
 Lots of decisions

Little number crunching

How to design an efficient “Compute” fabric?



Compute Efficiency for PE, Cluster, SoC
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PE: Snitch, a Tiny RISC-V Control Core
A versatile building block
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 Simplest core: around 20KGE
 Speed via simplicity (1GHZ+)  
 L0 Icache/buffer for low energy fetch
 Shared L1 for instruction reuse (SPMD)

 Extensible Accelerator port
 Minimal  baseline ISA (RISC-V)
 Extensibility: Performance through ISA 

extensions (via accelerator port)

 Latency-tolerant Scoreboard
 Tracks instruction dependencies
 Much simpler than OOO support!

L0
 IC

ac
he

Dependencies

Scoreboard



Snitch PE:  ISA Extension for efficient “Compute” 
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 How can we remove the Von Neumann Bottleneck?

 Targeting “compute” code

double sum = 0;
for (int i = 0; i < N; ++i) {
sum += A[i] * B[i];

}

fld ft0, 0(a1)
fld ft1, 0(a2)
addi a1, a1, 8
addi a2, a2, 8
fmadd.d fa0, ft0, ft1, fa0
bne a1, a3, -5

70 pJ
70 pJ
50 pJ
50 pJ
80 pJ
50 pJ

Memory access, operation, iteration control – can we do better?
Note: memory access (>1 cycle even for L1)  need latency tolerance for LD/ST



Stream Semantic Registers
LD/ST elision
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 Intuition: High FPU utilization ≈ high energy-efficiency

 Idea: Turn register read/writes into implicit memory 
loads/stores.

 Extension around the core’s register file

 Address generation hardware

 Increase FPU/ALU utilization by ~3x up to 100%

 SSRs ≠ memory operands
 Perfect prefetching, latency-tolerant



Floating-point Repetition Buffer
Remove control flow overhead in compute stream
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 Programmable micro-loop buffer

 Sequencer steps through the buffer, 
independently of the FPU

 Integer core free to operate in parallel: 
Pseudo-dual issue

 High area- and energy-efficiency



2 mem. acc. (“[…]”)
8 reg. acc.

2 mem. acc. (“”)
4 reg access
(no load instructions)

FMAdd R2, SSR0, SSR1
LDS  R2, [R0]
LDS  R3, [R1]
FFMA R4, R2, R3, R2

GPU Assembly Snitch Assembly

SNITCH vs GPU PE
 Snitch dissipates significant fraction of power in its FPU (more is better):
 GPUs  not much (5% reported in [1])

 Compared to NVIDIA GPU :
 Register file in GPU holds registers and thread-local data
 Each register read/write is an SRAM access
 Data and register accesses are in SRAM

= 10 SRAM hits total = 2 SRAM hits total

13



Efficient PE architecture in perspective
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1. Minimize control overhead  Simple, shallow pipelines
2. Reduce VNB   amortize IF: SSR-FREP + SIMD (Vector processing) 
3. Hide memory latency  non-blocking LD/ST+dependency tracking 
4. Highly expressive, domain-specific instructions with SPUs 
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Compute Efficiency for PE, Cluster, SoC



Tightly-Coupled Processors Clusters

HPC: Ampere’s SP HPE: RamonChips RC64 IoT: Greenwave’s GAP9

Pervasive Architectural Pattern for Data-Parallel Computing!



The Cluster: Design Challenges
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CLUSTER

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core
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core

Mem Mem MemMem

Mem

Mem

 Low latency access TCDM
 Multi-banked architecture
 Fast logarithmic interconnect 

 Fast synchronization
 Atomics
 Barriers

 Efficient PE
 Hide TCDM “residual” latency
 Remove Von Neumann Bottleneck



High speed logarithmic interconnect
P1 P2 P3 P4

B2 B3 B4 B5 B6 B7 B8B1

Routing 
Tree

Arbitration 
Tree

Processors

Memory 
Banks

N+1N N+2 N+3 N+4 N+5 N+6 N+7
N+8

World-level bank interleaving «emulates» multiported mem

A. Rahimi, I. Loi, M. R. Kakoee and L. Benini, "A fully-synthesizable single-cycle interconnection network for Shared-L1 processor clusters," 2011 Design, Automation & Test in Europe, 2011, pp. 1-6.18

Latency: 2 cycles + stalls for banking conflicts 



Fast synchronization and Atomics 
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CLUSTER

Tightly Coupled Data Memory
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core
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Mem
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 Atomic instructions 
 Leverage fast memory access
 Based on per-bank atomic adapters 

 Fast synchronization
 Atomics for generic primitives
 Accelerating barriers in HW (make 

the common case fast)
 Minimize idle power while waiting



Hardware-Accelerated, Event-Based Barrier 

Avoid busy waiting!
Minimize sw synchro. overhead
Efficient fine-grain parallelization

HW
SYNCH

PE3PE2PE1PE0

Private, per core port 
single cycle latency
no contention

20F. Glaser, et al, "Energy-Efficient Hardware-Accelerated Synchronization for Shared-L1-Memory Multiprocessor Clusters," in IEEE TPDS, vol. 32, no. 3, pp. 633-648, 1 March 2021.



Barrier: Results

21

 Fully parallel access to SCU: Barrier cost constant

 Primitive energy cost: Down by up to 30x

 Minimum parallel section for 10% overhead in terms of …
 … cycles: ~100 instead of > 1000 cycles
 … energy: ~70 instead of > 2000 cycles



Efficiently Global Data Mover
hide L2main memory latency

22

 64-bit AXI DMA – explicit double-buffered 
transfers – better than D$

 Tightly coupled with Snitch (<10 cycles 
configuration)

 Operates on wide 512-bit data-bus

 Hardware support to copy 2D shapes

 Higher-dimensionality handled by SW

 Intrinsics/library for easy programming

Snitch 
Core

DMA 
Backend

DMA
Decoder

2D 
Extension



Snitch Cluster Architecture

23

…

Logarithmic Interco
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Multibanked L1 (BF>1)
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FPU, 87.44

Miscellaneous, 
25.26

ICACHE, 4.82

SSR/FREP, 
9.52

Integer Core, 
4.24

L1 Memory, 
47.19

Where does the Energy go?
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Integer core uses
2% of power

SSR/FREP hardware
uses 5% of power

FPU uses 50% of power

In an 8-core cluster
Inevitable to have local memory
(e.g., GPU/GPU L1 cache, vector register file)

Spending energy where it contributes to the result  High Efficiency



Baikonur
The first Snitch-based test chip.
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Very efficient, versatile, compute cluster! How do we scale?

 Snitch compute cluster:
 8x RV32G Snitch cores
 8x large FPUs
 > 40% energy spent on FPU
 High energy-efficiency of ~80 Gdpflop/s/W
 104 Gspflop/s/W similar to accelerators

 9 mm2 prototype in GF 22FDX
 Testbed for key architectural 

components
 Snitch octa-core cluster 
 Ariane cores

21142

FPU Regfile RegfileSSR Rest CorePerf Cnt LSULSU

552162496 11 2 1 8

FP SS Sni tch FPU Seq Regs Rest

188

142 21 13 8 4

> 50%

kGE[ ]



Efficient Cluster architecture in perspective
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1. Memory pool – efficient sharing of L1 memory
2. Fast and parsimonious synchronization
3. Data Mover + Double buffering – explicitly managed block transfers at the boundary  
4. More cores and more memory per cluster… that would be nice!
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Occamy: a 12LPP+  AI & Stream Computing Chiplet
Silicon implementation of all key IPs (core, Phys, chiplet)
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Dual-chiplet configuration in 12LP+

• Area: ~70𝐦𝐦𝐦𝐦𝟐𝟐

Chip2chip link
HBM2e memories
Interposer
• 65nm tech, passive 
Substrate



From Snitch Cluster
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8 Snitch compute cores
 Single-stage, small Integer control core

9th Core: DMA 
 512 bit data interface
 Efficient data movement

128 kB TCDM
 Scratchpad for predictable memory accesses
 32 Banks

Custom ISA extensions
 Xfrep, Xssr
 New: Xissr sparsity support

1 FPU per Snitch core
 Decoupled and heavily pipelined
 Multi-format FPU (+SIMD)
 New: Minifloat support + SDOTP



To Snitch Group
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Snitch Group
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4 Clusters per Group
 Single-stage, small Integer control core

2 AXI Busses
 64-bit narrow interface: config
 512-bit wide interface: DMA

Constant Cache
 D/I-Cache hierarchy



From Snitch Group
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To Multi-Group

33



Occamy – Chiplet Architecture
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2 AXI Busses 
 64-bit narrow interface: config
 512-bit wide interface: DMA
Peripherals
 Complex address space management
Linux-capable manager core CVA6
6 Groups: 216 cores/die
 4 cluster / group:

 8 compute cores / cluster
 1 DMA core / cluster

 512bit Constant Cache
8-channel HBM2e (8GB)
D2D serial link



Occamy NoC: Efficient and Flexible Data Movement
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Problem: HBM Accesses are 
critical in terms of
 Access energy
 Congestion
 High latency

Instead reuse data on lower 
levels of the memory hierarchy
 Between clusters
 Across groups

Smartly distribute workload
 Clusters: DORY framework for tiling 

strategy [1]
 Chiplets: E.g. Layer pipelining

Cluster

Group Crossbar

Cluster Cluster

Group Crossbar

Cluster

System Crossbar

HBM Die2Die

… …

[1] Burrello, Alessio, et al. "Dory: Automatic end-to-end deployment of real-world 
dnns on low-cost iot mcus." IEEE Transactions on Computers 70.8 (2021): 
1253-1268. Big trend today!



Occamy’s C2C Link

36



Occamy Chiplet
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 GF12, target 1GHz (typ)

 2 AXI NoCs (multi-hierarchy)
 64-bit
 512-bit with “interleaved” mode

 Peripherals

 Linux-capable manager core CVA6

 6 Quadrants: 216 cores/chiplet
 4 cluster / quadrant:

 8 compute +1 DMA core / cluster
 1 multi-format FPU / core 

(FP64,x2 32, x4 16/alt, x8 8/alt)

 8-channel HBM2e (8GB) 512GB/s

 D2D link (Wide, Narrow) 70+2GB/s

 System-level DMA

 SPM (2MB wide, 512KB narrow)

Peak 384 GDPflop/s per chiplet – Taped-out in July 



Efficient SoC architecture in Perspective
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1. Multi-cluster single-die scaling  strong latency tolerance, modularity
2. NoC for flexible Clus2Clus, Clus2Mem traffic  reduce pressure to Main memory
3. Full chiplet architecture: HBM2e,  NoC-wrapped C2C, multi-chiplet ready



Back to the cluster… Can we make it Bigger?
 Why? 
 Better global latency tolerance if L1 > 2*Latency*Bandwidth  
 Easier to program (data-parallel, functional pipeline…)
 Smaller data partitioning overhead

 An efficient many-core  cluster with low-latency shared L1
 256+ cores
 1+ MiB of shared L1 data memory
 ≤ 5 cycles latency (without contention) 

 Physical-aware design
 WC Frequency > 500 Mhz
 Targeting iso-frequency with small cluster

39

MemPool



Hierarchical Physical Architecture

40

 Tile
 4 32-bit cores
 16 banks
 Single cycle memory access

 Group
 64 cores
 256 banks
 3-cycles latency

 Cluster
 256 cores
 1 MiB of memory (1024 banks)
 5-cycles  latency

TopH: Butterfly Multi-stage Interconnect 0.3req/core/cycle



Benchmarks: can we compete with the impossible? 

41

 Baseline: idealized TopX
 Fully connected logarithmic crossbar between 256 cores and 1024 banks

 Cycle-accurate RTL simulation
 Matmul
 Multiplication of two 64 × 64 matrices 
 2dconv
 2D Convolution with a 3 × 3 kernel
 dct
 2D Discrete Cosine Transform on 8 × 8 blocks in local memory

 TopH has a performance penalty of at most 20%, on all kernels



Energy Analysis (500 MHz, TT, 0.80 V, 25 °C)
 Breakdown of the energy consumption per instruction:

 Local loads consume about as much energy as a mul
 About half of it, 4.5pJ, by the interconnect

 Remote loads: twice the energy of a local load
 Despite crossing the whole cluster, twice!

42
Terapool (1024 cores) seems viable @ 7 cycles latency



MemPool-3D
 Memory-on-Logic implementation of MemPool
 Implementation of MemPool with 1, 2, 4, 8 MiB of L1
 Leading to a higher utilization of the memory die

43



Groups: MemPool-2D vs. MemPool-3D

MemPool-2D

Footprint: 1.000

Footprint: 1.074

Footprint: 1.299

Footprint: 1.572

MemPool-3D

Footprint: 0.665

Footprint: 0.665

Footprint: 0.857

Footprint: 0.737

128 KiB

256 KiB

512 KiB

1 MiB

7% larger Same footprint

14% smaller, despite 8x the L1 capacity!

Similar trends for Wire length and #Buffers
44



Conclusion
 Energy efficiency quest: PE, Cluster, SoC

 Key ideas
 Application specific PEs  extensible ISAs (RISC-V!)
 VNB removal + Latency hiding: large OOO processors not needed 
 Low-overhead work distribution  large “mempool”
 Heterogeneous architecture host+accelerator(s)

 Game-changing technologies
 Chiplets: 2.5D, 3D, (WFI?)
 Computing “at” memory, 
 Coming (less than ten years): optical IO

[AMD Naffziger ISCAS22]

[RIKEN Matsuoka MODSIM22] 45
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