ETH zürich

Tal Ben-Nun and the DaCe Team at SPCL

Scaling Machine Learning and Scientific Computing: A Data-Centric Perspective Efficient Simulations on GPU Hardware, October 2022

erc

This project received funding from the European Research Council (ERC) under the European Union's Horizon 2020 program (grant agreements MAELSTROM, No. 955513 and DEEP-SEA, No. 955606).

The state of the s

A Contraction of the second

Martin Patrician and

a all and an all and a second

Contraction of the second

ENS-10 and Ensemble Post-Processing

ENS-10: ~3 TB re-forecast (hindcast) dataset for ensemble weather forecasts:

- 10-member ensemble + control
- 0.5° latitude / longitude resolution
- Years: 1999 2017

Grönquist, Yao, Ben-Nun et al., Deep learning for post-processing ensemble weather forecasts, RSTA'21.

State Charles and

Data Movement is All You Need

__syncthreads();

// Compute a grid of C matrix tiles in each warp.
#pragma unroll

for (int k_step = 0; k_step < CHUNK_K; k_step++) {
 wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a[WARP_COL_TILES];
 wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::col_major> b[WARP_ROW_TILES];

#pragma unroll

for (int i = 0; i < WARP_COL_TILES; i++) {
 size_t shmem_idx_a = (warpId/2) * M * 2 + (i * M);
 const half *tile_ptr = &shmem[shmem_idx_a][k_step * K];</pre>

wmma::load_matrix_sync(a[i], tile_ptr, K * CHUNK_K + SKEW_HALF);

#pragma unroll

3

wmma::load_matrix_sync(b[j], tile_ptr, K * CHUNK_K + SKEW_HALF);

wmma::mma_sync(c[i][j], a[i], b[j], c[i][j]);

__syncthreads();

3

}

}

Tensor Core NVIDIA Code Sample

Data Movement is All You Need

High-performance optimization = data movement reduction

Station and the second

11

State of the Practice

DNN compilers are on the rise

Operator-centric view:

- Most are affected by "library jail"
 - Library calls (Convolution, GEMM) never decomposable
- Convolutions with higher FLOP count underperform
- Even within the "standard" realm, odd performance
- Hardcoded sharding schemes for distribution

Ben-Nun & Hoefler, Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, CSUR'19. Dryden et al., Channel and filter parallelism for large-scale CNN training, SC'19.

Rausch*, Ben-Nun* et al., A Data-Centric Optimization Framework for Machine Learning, ICS'22.

Workload	Size	%Peak FLOP/s
Conv1d (3->16, 3)	B=128, W=128	8.36
Conv2d (3->16, 3x3)	B=128, W=H=128	75.45
Conv3d (3->16, 3x3x3)	B=128, D=W=H=128	46.26

CUDA 11.4, CUDNN 8.0.5, PyTorch 1.8

Workload	PyTorch	torch.jit	JAX	TF+XLA
ResNet-50	32.04	31.94	33.93	35.57
Wide ResNet-50-2	70.94	70.83	98.13	99.06
Ratio (ideal: 2x)	2.21x	2.22x	2.89 x	2.78x

Forward+backprop time, in ms

A REAL PROPERTY OF

Engineering

DaCe Overview

And the second se

Data-Centric Intermediate Representation

- 1. Separate data containers from computation
- 2. Coarsening: multi-level view of data movement
- Data movement as a first-class citizen (dependencies → program order)
- 4. Control dependencies *only when dataflow is not implied*

DaCe Overview

DaCe Overview

Domain Scientist

Problem Formulation

 $\frac{\partial u}{\partial t} - \alpha \nabla^2 u = 0$

Python	DSLs			
PyTorch	С			

Scientific Frontend

glob_b = ...
class ClassA:
 def __init__(self, arr):
 self.q = arr

@dace.method
def __call__(self, a):
 return a * self.q + glob_b

Python JIT

def forward(self, x):
 return self.linear(x) / self.fanout

PyTorch (DaCeML)

for (int i = 0; i < N ; i++)
for (int j = row_ptr[i]; j < row_ptr[i+1]; j++)
 y[i] += A[col_idx[j]] * x[j];</pre>

С

N = dace.symbol()

for _ in range (1, tsteps):
 b[1: -1] = 0.33333 * (a[:-2] + a[1:-1] + a[2:])
 a[1: -1] = 0.33333 * (b[:-2] + b[1:-1] + b[2:])

Python AOT

```
sdfg.sdfg{entry=@state_0} @sdfg_0 {
    %A = sdfg.alloc() : !sdfg.array<2x6x8xi32>
    %B = sdfg.alloc() : !sdfg.array<2x6x8xi32>
    %C = sdfg.alloc() : !sdfg.array<2x6x8xi32>
    sdfg.state @state_0 {
        sdfg.map (%i, %j, %g) = (0, 0, 0) to (2, 2, 2) step (1, 1, 1) {
            %a_ijg = sdfg.load %A[%i, %j, %g] : !sdfg.array<2x6x8xi32> -> i32
            %b_ijg = sdfg.load %A[%i, %j, %g] : !sdfg.array<2x6x8xi32> -> i32
            %b_ijg = sdfg.load %A[%i, %j, %g] : !sdfg.array<2x6x8xi32> -> i32
            %b_ijg = sdfg.load %A[%i, %j, %g] : !sdfg.array<2x6x8xi32> -> i32
            %b_ijg = sdfg.load %A[%i, %j, %g] : !sdfg.array<2x6x8xi32> -> i32
            %bc ijg = sdfg.load %A[%i, %j, %g] : i32
            sdfg.return %z : i32
            }
        sdfg.store %res, %C[%i, %j, %g] : i32 -> !sdfg.array<2x6x8xi32>
        }
    }
    MLIR dialect
```

```
do i=is,ie+1
    if (cx(i,j,k) > 0.) then
        xfx(i,j,k) = cx(i,j,k)*dxa(i-1,j)*dy(i,j)*sin_sg(i-1,j,3)
    else
        xfx(i,j,k) = cx(i,j,k)*dxa(i, j)*dy(i,j)*sin_sg(i, j,1)
    endif
enddo
```

FORTRAN (coming soon...)

A real and a second second

From source code to SDFG

Code

```
glob_b = ...
class ClassA:
    def __init__(self, arr):
        self.q = arr
    @dace.method
    def __call__(self, a):
        return a * self.q + glob_b
```


From source code to SDFG

The sector of the Page

From source code to SDFG

From source code to SDFG Code Simplify **Optimize** Preprocess QKV-fused AIB n/out my_taskle \$A[\$ar] \$A[:] \$B[\$b arr (\$B \$A[:] \$REDUCE \$B[\$br] Local and Global Tuning Interface Graph Rewriting Transformations Interactive Transformation and Instrumentation

Visual Studio Code Integration

A DEAL OF A

Hierarchical Parallelism and Heterogeneity

Maps have schedules, arrays have storage locations

// ...
#pragma omp parallel for
for (int i = 0; i < N; i += TN) {
 vec<double, 4> tA[TN];
 Global2Stack_1D<double, 4, 1>(&A[i], min(N - i, TN), tA);
 for (int ti = 0; ti < TN; ti += 1) {
 vec<double, 4> in_A = tA[ti];
 auto out = (in_A * in_A);
 tC[ti] = out;
 }
}

Man and the Parts

Hierarchical Parallelism and Heterogeneity


```
__global__ void multiplication_1(...) {
    int i = blockIdx.x * TN;
    int ti = threadIdx.y + 0;
    if (i+ti >= N) return;
```

Charles and the Part of

```
__shared__ vec<double, 2> tA[TN];
GlobalToShared1D<double, 2, TN, 1, 1, false>(gA, tA);
```

```
vec<double, 2> in_A = tA[ti];
auto out = (in_A * in_A);
tC[ti] = out;
```

}

DaCe Overview

Der Valender and States

DaCe Performance

https://github.com/spcl/npbench

NumPyBench

NumPyBench FPGA

NumPyBench Distributed

PolyBench/C

Distributed Tensor Operations

Graph Analytics

Ziogas, Schneider, Ben-Nun et al., Productivity, Portability, Performance: Data-Centric Python, SC'21. Calotoiu, Ben-Nun et al., Lifting C semantics for dataflow optimization, ICS'22. Ziogas, Kwasniewski, Ben-Nun et al., Deinsum: Practically I/O Optimal Multilinear Algebra, SC'22.

DaCe Performance

Unstructured Hydrodynamics (LULESH)

Runtime	Performance	Peak BW.	%Roof.
$1,178\mu s$	$145\mathrm{GOp/s}$	$77\mathrm{GB/s}$	52%
$332\mu s$	$513\mathrm{GOp/s}$	$\infty { m GB/s}$	_
$5,\!270\mu\mathrm{s}$	$32\mathrm{GOp/s}$	$68\mathrm{GB/s}$	13%
$810\mu s$	$210\mathrm{GOp/s}$	$732\mathrm{GB/s}$	8%
$201\mu s$	$849\mathrm{GOp/s}$	$900\mathrm{GB/s}$	26%
	Runtime 1,178 μs 332 μs 5,270 μs 810 μs 201 μs	Runtime Performance 1,178 µs 145 GOp/s 332 µs 513 GOp/s 5,270 µs 32 GOp/s 810 µs 210 GOp/s 201 µs 849 GOp/s	$\begin{array}{llllllllllllllllllllllllllllllllllll$

*Without memory bandwidth constraints.

Numerical Weather Prediction (CPU, GPU, spatial)

Calotoiu, Ben-Nun et al. Lifting C semantics for dataflow optimization, ICS'22.

de Fine Licht, Kuster, De Matteis, Ben-Nun et al., StencilFlow: Mapping large stencil programs to distributed spatial computing systems, CGO'21.

Ziogas, Ben-Nun et al., A data-centric approach to extreme-scale ab initio dissipative quantum transport simulations, SC'19 (Gordon Bell Prize).

DaCe Overview

O PyTorch


```
def forward(self, x):
    return self.linear(x) / self.fanout
```

```
@python_pure_op_implementation
def Softplus(X, Y):
   Y[:] = numpy.log(1 + numpy.exp(X))
```


DaCeML

Rethink training as a data-centric program

Goals:

- No dependency on operators
 - Rewritten in NumPy
- Redesign Automatic Differentiation (AD)
 - Symbolically

Automate pipeline

- Before and after AD
- Guided still an option

Optimization Pipeline

def forward(self, x):
 return self.linear(x) / self.fanout

AND CONTRACTOR STREET

Rausch*, Ben-Nun* et al., A Data-Centric Optimization Framework for Machine Learning, ICS'22.

Optimization Pipeline

The second

Rausch*, Ben-Nun* et al., A Data-Centric Optimization Framework for Machine Learning, ICS'22.

Ivanov, Dryden, Ben-Nun et al., Data Movement Is All You Need: A Case Study on Optimizing Transformers, MLSys '21.

DaCeML Results – Networks vs. PyTorch, torch.jit, JAX, TF+XLA; with a Tesla V100 GPU

))	- Č	
	ResNet-50	Wide ResNet-50-2	MobileNet v2	WaveNet	DLRM	
State of the Art:	31.94 ms	70.83 ms	15.53 ms	41.49 ms	126.55 ms	
DaCeML:	32.45 ms 2.0	9x 67.99 ms	14.77 ms	41.07 ms	126.42 ms	
		EfficientNet	BERT _{LARGE}			
	State of the A	rt: 6.37 ms	8.11 ms			
	DaCeML Guid	ed: 5.97 ms	7.62 ms			

Rausch*, Ben-Nun* et al., A Data-Centric Optimization Framework for Machine Learning, ICS'22.

DaCeML Results – Networks vs. PyTorch, torch.jit, JAX, TF+XLA; with a Tesla V100 GPU

The second second

Rausch*, Ben-Nun* et al., A Data-Centric Optimization Framework for Machine Learning, ICS'22.

State State State

47

The Pace Project

CSCS

- Build a high-resolution atmospheric model entirely in Python that can run at scale on modern supercomputers
- Model of choice: Finite-Volume Cubed-Sphere (FV3GFS) global climate model
- Distributed across at least 6 nodes (faces of the cubed sphere)
- Full dynamical core: 12,450 Python LoC across 36 modules
- Stencils powered by an embedded DSL: GridTools for Python (GT4Py)
- Baseline: x86-optimized production FORTRAN

Ben-Nun et al., Productive Performance Engineering for Weather and Climate Modeling with Python, SC'22.

Usage: python -m pace.driver.run [OPTIONS] CONFIG PATH

CONFIG PATH is the path to a DriverConfig yaml file.

Run the driver.

Options:

NOA

GFDL

spcl.inf.ethz.ch EHzürich ₩ @spcl_eth

FV3 Dynamical Core

CSCS

Centro Svizzero di Calcolo Scientifico

Swiss National Supercomputing Centre

The second second second

spcl.inf.ethz.ch

A CONTRACTOR OF THE OWNER OF THE

Ben-Nun et al., Productive Performance Engineering for Weather and Climate Modeling with Python, SC'22.

CSCS Centro Svizzero di Calcolo Scientifico Swiss National Supercomputing Centre

4

*** SPEL

Interval, Operation, K, J, I

J, I, Interval, Operation, K

The sector was

Ben-Nun et al., Productive Performance Engineering for Weather and Climate Modeling with Python, SC'22.

ETH zürich

CSCS Centro Svizzero di Calcolo Scientifico Swiss National Supercomputing Centre

CSCS Centro Svizzero di Calcolo Scientifico Swiss National Supercomputing Centre

CSCS spcl.inf.ethz.ch **ETH** zürich 🍯 @spcl_eth Swiss National Supercomputing Centre 00 **Weak Scaling** Module-Based Benchmark, Transfer-Tune to **Initial Heuristics** Generate Perf. Model Autotuning **Full Application** Suboptimal Kernel Fine Tuning Inspection 18

61043.92 - 8.48x0weeks ofcodeperformancespeedup vs.modelworkrevisionsengineersproduction FORTRANchanges

Ben-Nun et al., Productive Performance Engineering for Weather and Climate Modeling with Python, SC'22.

...

A STATE OF THE STA

https://www.github.com/spcl/dace

pip install dace pip install daceml