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LATTICE QCD IS HUNGRY

Summit cycle 
breakdown in 

INCITE allocation

Summit cycle 
breakdown in 

INCITE use 

NERSC Utilization 

(Aug ’17 - Jul’18)

LQCD ~40%

NERSC workload is extremely diverse,
but not evenly divided.

● 10 codes make up 50% 
of workload.

● 20 codes make up 66% 
of workload.

● 50 codes make up 84% 
of workload.

● Remaining codes
(over 600) make up 16% 
of workload.

Python

LQCD ~13%

Jack Wells
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LATTICE QUANTUM CHROMODYNAMICS

Theory is highly non-linear ⇒ cannot solve directly


Must resort to numerical methods to make predictions 

Lattice QCD

Discretize spacetime ⇒ 4-d dimensional lattice of size


Finite spacetime ⇒ periodic boundary conditions


PDEs ⇒ finite difference equations ⇒ Linear solvers  Ax = b


Consumer of 10+% of public supercomputer cycles

Traditionally highly optimized on every HPC platform for the past 30 years 

Jobs often run at the 1000+ GPU scale


Lx × Ly × Lz × Lt
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STEPS IN AN LQCD CALCULATION

1. Generate an ensemble of gluon field configurations “gauge generation”

Hybrid Monte Carlo is the algorithm of choice

Produced in sequence, with hundreds needed per ensemble

Strong scaling required with 100-1000 TFLOPS sustained for several months

70-90% of the runtime is in the Krylov solver

O(1) solve per linear system


2. “Analyze” the configurations

Task parallelism means that clusters reign supreme here

80-99% of the runtime is in the Krylov solver

Many solves per system, e.g., O(106)


D↵�
ij (x, y;U) �

j (y) = ⌘↵i (x)

or Ax = b
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SCALING THE BERLIN WALL

Wittig et al 2001 Kennedy 2004 Clark 2006

Simulation Cost ~ Vαaβmγ 




α = 1.25
β ∈ − [3,6]
γ ∼ − 3

(Early 2000s possible values)
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SCALING THE BERLIN WALL

Metropolis Volume dependence 

Scaling arises from holding stepwise errors with second-order Symplectic integrator 


Suppressed through use of fourth-order integrator 


Linear solver critical critical slowing down

Condition number diverges as we approach physical point

(Adaptive) Multigrid removes the condition number and volume dependence 


Fermion force instability


Instability in the MD integration due to low fermion modes requiring  as 

Hasenbusch mass preconditioning / multiple pseudo-fermions dealt with step size instabilities


Autocorrelation length diverges as 

Topology freezing…

Vα

α → 1.125

δt → 0 m → 0

a → 0

Hasenbusch 2001, 
Urbach et al 2005, 
Clark and Kennedy 2006

Kennedy, Silva and Clark, 2012

Citations are illustrative, 
 not exhaustive

Lüscher 2007 
Brannick et al 2007 
Babbich et al 2010 
Frommer et al 2013
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GPUS FOR LQCD
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WHAT IS A GPU?

GPUs are extreme hierarchical processors


Many-core processor programmed using a massively threaded model

Threads arranged as Cartesian hierarchy of grids


Deep memory hierarchy

Registers <-> L1 <-> L2 <->              <->


Increasingly coupled instruction hierarchy

Tensor cores <-> CUDA cores <-> shared mem atomics <-> L2 atomics


Synchronization possible at many levels

(Sub-)Warp <-> Thread Block <-> Grid <-> Node <-> Cluster

64 GB/s bi-directional

1.6 TB/s

> 20 TB/s

> 3 TB/s

Device 
Memory

Host 
Memory

A100 sketch
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ANNOUNCING H100

HIGHEST AI AND HPC PERFORMANCE 
4PF FP8 (6X)| 2PF FP16 (3X)| 1PF TF32 (3X)| 60TF FP64 (3X)

3TB/s (1.5X), 80GB HBM3 memory 

TRANSFORMER MODEL OPTIMIZATIONS
6X faster on largest transformer models 

HIGHEST UTILIZATION EFFICIENCY AND SECURITY
7 Fully isolated & secured instances, guaranteed QoS 

2nd Gen MIG | Confidential Computing 

FASTEST, SCALABLE INTERCONNECT 
900 GB/s GPU-2-GPU connectivity (1.5X)

up to 256 GPUs with NVLink Switch | 128GB/s PCIe Gen5 

Unprecedented Performance, Scalability, and Security for Every Data Center

Custom 4N TSMC Process  |  80 billion transistors  
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QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)

• Effort started at Boston University in 2008, now in wide use as the GPU 

backend for BQCD, Chroma**, CPS**, MILC**, TIFR, etc.Provides solvers for 
all major fermionic discretizations, with multi-GPU support

• Maximize performance


– Mixed-precision methods

– Autotuning for high performance on all CUDA-capable architectures

– Multigrid solvers for optimal convergence

– NVSHMEM for improving strong scaling


• Portable: HIP (merged), SYCL (in review) and OpenMP (in development)

• A research tool for how to reach the exascale (and beyond)


– Optimally mapping the problem to hierarchical processors and node topologies

**ECP benchmarks apps

!9

QUDA

• “QCD on CUDA” – http://lattice.github.com/quda (C++14, open source, BSD license) 
• Effort started at Boston University in 2008, now in wide use as the GPU backend for 

BQCD, Chroma, CPS, MILC, TIFR, etc. 
• Various solvers for all major fermionic discretizations, with multi-GPU support 
• Maximize performance 

– Mixed-precision methods (runtime specification of precision for maximum flexibility) 
– Exploit physical symmetries to minimize memory traffic 
– Autotuning for high performance on all CUDA-capable architectures 
– Domain-decomposed (Schwarz) preconditioners for strong scaling 
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR) 
– Multi-RHS solvers 
– Multigrid solvers for optimal convergence 

• A research tool for how to reach the exascale (and beyond)
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QUDA CONTRIBUTORS

! Ron Babich (NVIDIA)

! Simone Bacchio (Cyprus)

! Kip Barros (LANL)

! Rich Brower (Boston University)

! Nuno Cardoso (NCSA)

! Kate Clark (NVIDIA)

! Michael Cheng (Boston University)

! Carleton DeTar (Utah University)

! Justin Foley (Utah -> NIH)

! Joel Giedt (Rensselaer Polytechnic Institute)

! Arjun Gambhir (William and Mary)

! Steve Gottlieb (Indiana University)

! Kyriakos Hadjiyiannakou (Cyprus)

! Dean Howarth (LLNL)

! Xiao-Yong Jin (ANL)

! Bálint Joó (Jlab)


! Hyung-Jin Kim (BNL -> Samsung)

! Bartek Kostrzewa (Bonn)

! James Osborn (ANL)

! Claudio Rebbi (Boston University)

! Eloy Romero (William and Mary)

! Hauke Sandmeyer (Bielefeld)

! Guochun Shi (NCSA -> Google)

! Mario Schröck (INFN)

! Alexei Strelchenko (FNAL)

! Jiqun Tu (NVIDIA)

! Alejandro Vaquero (Utah University) 

! Mathias Wagner (NVIDIA)

! André Walker-Loud (LBL)

! Evan Weinberg (NVIDIA)

! Frank Winter (Jlab)

! Yi-bo Yang (CAS)

10+ years - lots of contributors
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QUDA NODE PERFORMANCE OVER TIME
Multiplicative speedup through software and hardware

Sp
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Speedup determined by measured time to solution for solving the Wilson operator against a random source on a V=24364  
lattice, β=5.5, Mπ=416 MeV.  One node is defined to be 3 GPUs.

Multi-GPU 
capable

Adaptive  
Multigrid

Optimized  
Multigrid

Deflated  
Multigrid

~600x
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MAPPING THE DIRAC OPERATOR TO GPUS

• Finite difference operator in LQCD is known as Dslash


• Assign a single space-time point to each thread

V = XYZT threads, e.g., V = 244 => 3.3x106 threads


• Looping over direction each thread must

– Load the neighboring spinor (24 numbers x8)

– Load the color matrix connecting the sites (18 numbers x8)

– Do the computation

– Save the result (24 numbers) 


• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity


• QUDA reduces memory traffic

Exact SU(3) matrix compression (18 => 12 or 8 real numbers)

Use 16-bit fixed-point representation with mixed-precision solver

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

Dx,x0 =
x x

x

x−

x−

U x



U
x

μ

μ

ν

X[0]

X[1]
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SINGLE GPU PERFORMANCE
“Wilson-clover” stencil (Chroma, V100)

Tesla V100,  
CUDA 10.1,  
GCC 7.3,  
QUDA 1.0

~1325 GB/s

~1275 GB/s

~1200 GB/s
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MIXED PRECISION
Using your bits wisely
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m
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MILC/QUDA HISQ CG, mass = 0.001 => ~106κ MILC/QUDA HISQ CG solver 

Tesla V100,  
CUDA 10.1,  
GCC 7.3,  
QUDA 1.0
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WHY MULTIGRID?
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MULTIGRID

GPU requirements very different from CPU


Each thread is slow, but O(10,000) threads 
per GPU


Fine grids run very efficiently


High parallel throughput problem


Coarse grids are worst possible scenario


More cores than degrees of freedom


Increasingly serial and latency bound


Amdahl’s law limiter


The optimal method for solving PDE-based linear systems
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COARSE GRID OPERATOR PERFORMANCE
Tesla K20X (Titan), FP32, Nvec = 24
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24,576-way parallel 
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c.f. Fine grid operator  
     ~300-400 GFLOPS
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CHROMA HMC ON SUMMIT

From Titan running 2016 code to Summit 
running 2019 code we see >82x speedup in HMC 
throughput


Multiplicative speedup coming from mapping 
hierarchical algorithm to hierarchical machine


Highly optimized multigrid for gauge field 
evolution


Mixed precision an important piece of the puzzle

• double – outer defect correction

• single – GCR solver

• half – preconditioner

• int32 – deterministic parallel coarsening 

KC, Bálint Joó, Mathias Wagner, Evan Weinberg, Frank Winter, Boram Yoon

Chroma ECP benchmark

151

Selene (128x A100, 
Sep 2021)

10.2x faster on 
8x fewer GPUs 

~82x gain 

Hardware: 2.1x faster on 
8x fewer GPUs ~17x gain 

Hardware, NVSHMEM, 
tensor cores: 2.5x
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SCALING CHALLENGES
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HPC IS GETTING MORE HIERARCHICAL
What does a node even mean?

Legacy Current

Cray XT4 (2007)

https://www.nersc.gov/assets/NUG-Meetings/NERSCSystemOverview.pdf

NVIDIA DGX-A100 (2020)

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
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EVOLVING GPU HIERARCHY

NVIDIA G80 (Tesla)

128 FP32 elements

681M transistors

NVIDIA GH100 (Hopper)

18432 FP32 elements


80B transistors

2006 2022

Entire G80 ~ single H100 SM  



26

INTRODUCING CLUSTERS

Warp


Communication through lane shuffling


Thread block


Communication through shared memory


Thread block cluster


Communication through distributed shared memory


Global


Communication through global memory


Kernel boundary or grid synchronization

Synchronization at all levels

New!
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MULTI-GPU BUILDING BLOCKS

Halo packing Kernel


Interior Kernel


Halo communication


Halo update Kernel

Multi GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011

Halo packing Kernel


Interior Kernel


Halo communication


Halo update Kernel

Overlap
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MULTI-GPU PROFILE
overlapping comms and compute

324  local volume, 
single precision

Halo exchange

Interior kernel
Packing kernel

Halo kernels
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STRONG SCALING PROFILE
overlapping comms and compute

Halo exchange
Interior kernel

Packing kernel Halo kernels
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164  local volume, 
half precision
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WHAT IS THE PROBLEM?

It’s not just data movement we need to 
minimize


Task marshaling from a lower level of 
hierarchy (e.g., host) adds latency


Data consistency requires synchronization 
between CPU and GPU


Ideally: offload of task marshaling to GPU 
thread to have same locality as data

NVIDIA DGX-1 With Tesla V100 System Architecture  WP-08437-002_v01 | 9

V100
GPU7

V100
GPU4

V100
GPU6

V100
GPU5

CPU1NIC NIC

PCIe Switches

V100
GPU0

V100
GPU3

V100
GPU1

V100
GPU2

CPU0NIC NIC

PCIe Switches

NVLink PCIe QPI

Figure 4 DGX-1 uses an 8-GPU hybrid cube-mesh interconnection network topology.  
The corners of the mesh-connected faces of the cube are connected to the PCIe tree network, which 
also connects to the CPUs and NICs.
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NVSHMEM

NVSHMEM features

Symmetric memory allocations in device memory

Communication API calls on CPU (standard and stream-ordered)

Kernel-side communication (API and LD/ST) between GPUs


NVLink and PCIe support (intra-node)

InfiniBand support (inter-node)

Interoperability with MPI and OpenSHMEM libraries


Implementation of OpenSHMEM1, a Partitioned Global Address Space (PGAS) library

1 SHMEM from Cray’s “shared memory” library, https://en.wikipedia.org/wiki/SHMEM

Available in NVIDIA HPC 
toolkit
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DSLASH ÜBER KERNEL

Packing Interior

pack_blocks interior_blocks = grid_dim - pack_blocks - exterior_blocks

nvshmem_signal 
for each 
direction

Exterior (Halo)

exterior_blocks

atomic wait for 
interior

nvshmem_wait_until

atomic flag set by last block

Mathias Wagner
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ÜBER KERNEL

` 164  local volume, 
half precision
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über kernel (packing + interior + exterior)

Mathias Wagner
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LATENCY REDUCTIONS
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SELENE STRONG SCALING
Global volume 643x128

1.6x speedup

Mathias Wagner
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PARALLELISM AND 
LOCALITY
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PARALLELISM ISN’T INFINITE…
Wilson stencil performance
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…UNLESS WE MAKE IT

 63

MULTIPLE RIGHT-HAND SIDES
G

Fl
op

/s

# rhs

483x12, HISQ, single precision, one code

0

750

1,500

2,250

3,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Volta (2017) Pascal (2016) Maxwell (2014) Kepler (2012) Fermi (2010)

2.5x

3.5x



39

MULTIGRID 
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MULTIGRID COMPONENTS
Wilson-clover solve (Chroma), V=324

Classify multigrid kernels

Matrix-matrix: flops / cache bound

Matrix-vector: bandwidth bound


“Structured” GEMMS pervade the MG setup

Coarse operator construction

Block orthogonalization


Tensor cores?


Note: log scale

matrix-matrix matrix-vector
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MULTIGRID COMPONENTS
Wilson-clover solve (Chroma), V=324

MG is a preconditioner

16-bit precision is perfectly adequate

No impact on convergence rate 


Majority of MG setup kernels now 
implemented using tensor cores


1.5x-10x kernel speedups observed


Future work: reworking the pipeline to 
expose more in explicit matrix-matrix form

Note: log scale
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REWORKING THE LQCD PIPELINE

2 nucleon (2 baryon) and 2 hadron (ππ, Κπ)  and meson-baryon catering cross sections


slaphnn collaboration 

AI ~ flops / bytes
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FUTURE CHALLENGES



44

PROTRACTED DEATH OF MOORE’S LAW
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PROTRACTED DEATH OF MOORE’S LAW
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EXASCALE IS FINALLY HERE 

Matrix and tensor operations required to saturate the machine


Low precision will go much faster


Extreme parallelism required


Hierarchy and Locality must be considered


Follow trends towards future architectures and seize disruptive opportunities

Zettascale will be even harder
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WHAT COULD LQCD DO WITH 100X MORE?

Can we get significantly more science with 100x more specialized compute?


Can we bludgeon our way past critical slowing down with HMC?


Or solve it with an algorithmic evolution (sMD, Fourier acceleration, etc.)


Or do we need a completely different approach…

That can more naturally use all those AI flops that are coming?     

Getting nowhere even faster?




