
Applications of Normalizing Flows
as Generative Models in Lattice Field Theory

Javad Komijani
(with Marina K. Marinkovic)

Efficient Simulations on GPU Hardware
ETH Zürich, October 2022

JK (ETH) 1 / 21

Lattice Field Theory & Monte Carlo Simulations

Path integral formulation & imaginary time &
discretization & Monte Carlo simulations

⇓
define & solve a field theory non-perturbatively

⟨O⟩ = 1

Z

∫
Dϕ O[ϕ] e−S[ϕ]

Monte Carlo simulations:
Draw samples from 1

Z
e−S[ϕ] distribution (weight of each path/configuration)

Methods based on local updating suffer from: critical slowing down,
topological freezing, · · ·

update

e−S[φ]

switch

Metropolis

delay

ACCEPT/REJECT

φ(x)

on/off

JK (ETH) 2 / 21

Lattice Field Theory & Trivializing Maps

904 M. Lüscher

In the case of the Wilson flow, for example, the contribution of the Jacobian to the action
of the field V ,

ln det Ft,∗(V) = − 16
3

∫ t

0

ds W0(Us), (3.9)

is proportional to the integral of the Wilson plaquette action along the flow.

4. Trivializing Maps

Somewhat surprisingly, trivializing maps can, to some extent, be constructed explicitly
in the pure gauge theory. The construction is explained in this section, assuming that the
gauge action S(U) is a sum of Wilson loops (plaquettes, rectangles, etc.).

4.1. Trivializing flows. If the generator Z t (U) of the flow (3.2) is such that

∫ t

0

ds
∑

x,µ

{
∂a

x,µ[Zs(U)]a(x, µ)
}

U=Us
= t S(Ut) + Ct , (4.1)

where Ct may depend on t but not on the fields, the associated integrated transformations
satisfy

S(Ft (V)) − ln det Ft,∗(V) = (1 − t)S(Ft (V)) − Ct . (4.2)

In particular, the transformation at t = 1 is then a trivializing map.
Equation (4.1) is a rather implicit condition on the generator of the flow. However,

when differentiated with respect to t , it assumes a more tractable form,

∑

x,µ

{
∂a

x,µ[Z t (U)]a(x, µ) − t∂a
x,µS(U)[Z t (U)]a(x, µ)

}
= S(U) + Ċt , (4.3)

which involves the generator at time t only. Note that the differential condition (4.3)
and the flow equation (3.2) imply Eq. (4.1), i.e. it suffices to find a generator Zt (U) that
satisfies Eq. (4.3).

4.2. Existence of trivializing flows. Equation (4.3) is an inhomogeneous linear partial
differential equation for the generator Z t (U). Since it is a scalar equation, one expects
that there are many solutions. In the following, the solution will be obtained in the form

[Z t (U)]a(x, µ) = −∂a
x,µ S̃t (U), (4.4)

where the action S̃t (U) is to be determined.
When inserted in Eq. (4.3), the ansatz (4.4) leads to the Laplace equation

Lt S̃t = S + Ċt , (4.5)

Lt =
∑

x,µ

{
−∂a

x,µ∂a
x,µ + t

(
∂a

x,µS
)
∂a

x,µ

}
(4.6)

JK (ETH) 3 / 21

Inverse Transform Sampling & Normalizing Flows

Inverse transform sampling (ITS) as a method to generate a random variable
with a flexible distribution:

y ≜ F−1
Y ◦ FX(x)

Normalizing flows (NFs) as a generalization of ITS to higher dimensions with
a series of learnable, invertible transformations

prior transform

e−S[ϕ]

switch

/ Metropolis

delay

gradient descent

TRAIN

GENERATE

ACCEPT/REJECT

ξ(x)

r[ξ]

ϕ(x)

q[ϕ]

p[ϕ] log q/p

on/off

JK (ETH) 4 / 21

Normalizing Flows & {Statistical Physics, Lattice Field Theory}
NF for (a dual version of) Ising model in 2 dim [arXiv:1802.02840]
NF for scalar theories in 2-dim [arXiv:1904.12072, 2002.02428, 2003.06413]

Requirements

Prior PDF: fΞ(ξ)

Target PDF: fΦ(ϕ) ∝ e−S[ϕ]

NF neural network ϕ = T (ξ)

Train (self learning by minimizing the loss)

Sample a batch of variables from the prior

Transform the batch of variables & calculate the
Jacobian

Loss = DKL(qtransformed||ptarget)

prior transform

e−S[ϕ]

switch

/ Metropolis

delay

gradient descent

TRAIN

GENERATE

ACCEPT/REJECT

ξ(x)

r[ξ]

ϕ(x)

q[ϕ]

p[ϕ] log q/p

on/off

Kullback-Leibler divergence measures how similar two distributions are:

DKL(q||p) ≡
∫

dϕ q[ϕ]
(
log q[ϕ]− log p[ϕ]

)
≥ 0

JK (ETH) 5 / 21

Requirements

Prior PDF: fΞ(ξ)

Target PDF: fΦ(ϕ) ∝ e−S[ϕ]

NF neural network ϕ = T (ξ)

Train (self learning by minimizing the loss)

Sample a batch of variables from the prior

Transform the batch of variables & calculate the
Jacobian

Loss = DKL(qtransformed||ptarget)

prior transform

e−S[ϕ]

switch

/ Metropolis

delay

gradient descent

TRAIN

GENERATE

ACCEPT/REJECT

ξ(x)

r[ξ]

ϕ(x)

q[ϕ]

p[ϕ] log q/p

on/off

Generate samples & ensure exactness

The method of normalizing flows yields an approximate distribution (close to target but not identical)

One needs to exploit other methods to ensure the exactness of the final distribution

For an unbiased estimate, one can use the Metropolis-Hastings (MH) algorithm to accept/reject
proposed configurations:

paccept(ϕ
′|ϕi−1

) = min

(
1,

q(ϕi−1)

p(ϕi−1)

p(ϕ′)

q(ϕ′)

)
JK (ETH) 6 / 21

1. Networks for Normalizing Flows

2. Poor Scaling at Large Volumes

JK (ETH) 7 / 21

Designing Networks for NF: Review Papers

“Normalizing Flows: An Introduction and Review of Current Methods”
[IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 3964 (2021)]

most commonly used activation function ReLU is not bijec-
tive and can not be directly applicable, however, the
(Parametric) Leaky ReLU [39], [64] can be used instead
among others. Note that recently spline-based activation
functions have also been considered [24], [25] and will be
discussed in Section 3.4.4.4.

3.2 Linear Flows

Elementwise operations alone are insufficient as they cannot
express any form of correlation between dimensions. Linear
mappings can express correlation between dimensions

gðxÞ ¼ Axþ b; (8)

where A 2 RD�D and b 2 RD are parameters. If A is an
invertible matrix, the function is invertible.

Linear flows are limited in their expressiveness. Consider
a Gaussian base distribution: pZðzÞ ¼ N ðz;m;SÞ. After
transformation by a linear flow, the distribution remains
Gaussian with distribution pY ¼ Nðy;Amþ b;ATSAÞ. More
generally, a linear flow of a distribution from the exponen-
tial family remains in the exponential family. However, lin-
ear flows are an important building block as they form the
basis of affine coupling flows (Section 3.4.4.1).

Note that the determinant of the Jacobian is simply
detðAÞ, which can be computed inOðD3Þ, as can the inverse.
Hence, using linear flows can become expensive for largeD.
By restricting the form of A we can avoid these practical
problems at the expense of expressive power. In the follow-
ing sections we discuss different ways of limiting the form
of linear transforms to make them more practical.

3.2.1 Diagonal

If A is diagonal with nonzero diagonal entries, then its
inverse can be computed in linear time and its determinant
is the product of the diagonal entries. However, the result is
an elementwise transformation and hence cannot express
correlation between dimensions. Nonetheless, a diagonal
linear flow can still be useful for representing normalization
transformations [20] which have become a ubiquitous part
of modern neural networks [46].

3.2.2 Triangular

The triangular matrix is a more expressive form of linear
transformation whose determinant is the product of its
diagonal. It is non-singular so long as its diagonal entries
are non-zero. Inversion is relatively inexpensive requiring a
single pass of back-substitution costing OðD2Þ operations.

Tomczak and Welling [91] combined K triangular matri-
ces Ti, each with ones on the diagonal, and aK-dimensional
probability vector v to define a more general linear flow
y ¼ ð

PK
i¼1

viTiÞz. The determinant of this bijection is one.
However finding the inverse has OðD3Þ complexity, if some
of the matrices are upper- and some are lower-triangular.

3.2.3 Permutation and Orthogonal

The expressiveness of triangular transformations is sensi-
tive to the ordering of dimensions. Reordering the dimen-
sions can be done easily using a permutation matrix which
has an absolute determinant of 1. Different strategies have
been tried, including reversing and a fixed random permu-
tation [20], [57]. However, the permutations cannot be
directly optimized and so remain fixed after initialization
which may not be optimal.

A more general alternative is the use of orthogonal trans-
formations. The inverse and absolute determinant of an
orthogonal matrix are both trivial to compute which make
them efficient. Tomczak and Welling [92] used orthogonal
matrices parameterized by the Householder transform. The
idea is based on the fact from linear algebra that any orthog-
onal matrix can be written as a product of reflections. To
parameterize a reflection matrix H in RD one fixes a non-
zero vector v 2 RD, and then definesH ¼ 11� 2

jjvjj2
vvT .

3.2.4 Factorizations

Instead of limiting the form of A, Kingma and Dhariwal [57]
proposed using the LU factorization

gðxÞ ¼ PLUxþ b; (9)

where L is lower triangular with ones on the diagonal, U is
upper triangular with non-zero diagonal entries, and P is a
permutation matrix. The determinant is the product of the
diagonal entries of U which can be computed in OðDÞ. The
inverse of the function g can be computed using two passes
of backward substitution in OðD2Þ. However, the discrete
permutation P cannot be easily optimized. To avoid this, P
is randomly generated initially and then fixed. Hoogeboom
et al. [42] noted that fixing the permutation matrix limits the
flexibility of the transformation, and proposed using the QR

decomposition instead where the orthogonal matrix Q is
described with Householder transforms.

3.2.5 Convolution

Another form of linear transformation is a convolution
which has been a core component of modern deep learn-
ing architectures. While convolutions are easy to compute
their inverse and determinant are non-obvious. Several
approaches have been considered. Kingma and Dhariwal
[57] restricted themselves to “1� 1” convolutions for
flows which are simply a full linear transformation but
applied only across channels. Zheng et al. [107] used 1D

Fig. 2. Overview of flows discussed in this review. We start with element-
wise bijections, linear flows, and planar and radial flows. All of these
have drawbacks and are limited in utility. We then discuss two architec-
tures (coupling flows and autoregressive flows) which support invertible
non-linear transformations. These both use a coupling function, and we
summarize the different coupling functions available. Finally, we discuss
residual flows and their continuous extension infinitesimal flows.

KOBYZEV ETAL.: NORMALIZING FLOWS: AN INTRODUCTION AND REVIEW OF CURRENT METHODS 3967

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 24,2022 at 08:01:29 UTC from IEEE Xplore. Restrictions apply.

“Normalizing Flows for Probabilistic Modeling and Inference”
[Journal of Machine Learning Research 22, 1 (2021)]

Papamakarios, Nalisnick, Rezende, Mohamed and Lakshminarayanan

Figure 2: Illustration of a flow composed of K transformations.

Optimal transport and the Wasserstein metric (Villani, 2008) can also be formulated in
terms of transformations of measures (‘transport of measures’)—also known as the Monge
problem. In particular, triangular maps (a concept deeply related to autoregressive flows)
can be shown to be a limiting solution to a class of Monge–Kantorovich problems (Carlier
et al., 2010). This class of triangular maps itself has a long history, with Rosenblatt (1952)
studying their properties for transforming multivariate distributions uniformly over the
hypercube. Optimal transport could be a tutorial unto itself and therefore we mostly
sidestep this framework, instead choosing to think in terms of the change of variables.

3. Constructing Flows Part I: Finite Compositions

Having described some high-level properties and uses of flows, we transition into describing,
categorizing, and unifying the various ways to construct a flow. As discussed in Section 2.1,
normalizing flows are composable; that is, we can construct a flow with transformation T
by composing a finite number of simple transformations Tk as follows:

T = TK ◦ · · · ◦ T1. (25)

The idea is to use simple transformations as building blocks—each having a tractable in-
verse and Jacobian determinant—to define a complex transformation with more expressive
power than any of its constituent components. Importantly, the flow’s forward and inverse
evaluation and Jacobian-determinant computation can be localized to the sub-flows. As
illustrated in Figure 2, assuming z0 = u and zK = x, the forward evaluation is:

zk = Tk(zk−1) for k = 1, . . . , K, (26)

the inverse evaluation is:

zk−1 = T−1
k (zk) for k = K, . . . , 1, (27)

and the Jacobian-determinant computation (in the log domain) is:

log |det JT (z0)| = log

∣∣∣∣∣
K∏

k=1

det JTk
(zk−1)

∣∣∣∣∣ =

K∑

k=1

log |det JTk
(zk−1)| . (28)

10

JK (ETH) 8 / 21

Designing Networks for NF: Coupling Layers

Coupling Flows are popular
enable highly expressive transformations
have triangular Jacobian matrices
e.g., can be implemented using checkerboard partitioning

1. Partition the data to blue (active) & red (frozen)

2. Transform the active data xa → xa = T (xa|h(xf))

3. Change the labels and repeat 2 (w/ new functions)

T is typically a point-wise transformation like affine & spline

T (xa|h(xf)) = h1(xf)xa + h2(xf)

hi are typically constructed using Dense NNs or Convolutional NNs

Several layers of coupling flows can be added sequentially

Papamakarios, Nalisnick, Rezende, Mohamed and Lakshminarayanan

Figure 2: Illustration of a flow composed of K transformations.

Optimal transport and the Wasserstein metric (Villani, 2008) can also be formulated in
terms of transformations of measures (‘transport of measures’)—also known as the Monge
problem. In particular, triangular maps (a concept deeply related to autoregressive flows)
can be shown to be a limiting solution to a class of Monge–Kantorovich problems (Carlier
et al., 2010). This class of triangular maps itself has a long history, with Rosenblatt (1952)
studying their properties for transforming multivariate distributions uniformly over the
hypercube. Optimal transport could be a tutorial unto itself and therefore we mostly
sidestep this framework, instead choosing to think in terms of the change of variables.

3. Constructing Flows Part I: Finite Compositions

Having described some high-level properties and uses of flows, we transition into describing,
categorizing, and unifying the various ways to construct a flow. As discussed in Section 2.1,
normalizing flows are composable; that is, we can construct a flow with transformation T
by composing a finite number of simple transformations Tk as follows:

T = TK ◦ · · · ◦ T1. (25)

The idea is to use simple transformations as building blocks—each having a tractable in-
verse and Jacobian determinant—to define a complex transformation with more expressive
power than any of its constituent components. Importantly, the flow’s forward and inverse
evaluation and Jacobian-determinant computation can be localized to the sub-flows. As
illustrated in Figure 2, assuming z0 = u and zK = x, the forward evaluation is:

zk = Tk(zk−1) for k = 1, . . . , K, (26)

the inverse evaluation is:

zk−1 = T−1
k (zk) for k = K, . . . , 1, (27)

and the Jacobian-determinant computation (in the log domain) is:

log |det JT (z0)| = log

∣∣∣∣∣
K∏

k=1

det JTk
(zk−1)

∣∣∣∣∣ =
K∑

k=1

log |det JTk
(zk−1)| . (28)

10

[Journal of Machine Learning Research 22, 1 (2021)]

JK (ETH) 9 / 21

Designing Networks for NF: Examples with Coupling Layers

Proof of principle studies are done for several theories in 2 dimensions

Scalar theory with quartic potential [arXiv:1904.12072, arXiv:2105.12481]

S[ϕ] =

∫
d2x

(
1

2
(∂µϕ)

2 +
1

2
m2ϕ2 + λϕ4

)

A Jupiter notebook can be found here [arXiv:2101.08176]

scalar theory on a 8× 8 lattice
16 layers of layers of affine coupling layers for T and 3 layers of CNNs for h
acceptance rate ≈ 0.5

U(1) gauge (2 dim) [arXiv:2003.06413]

SU(n) gauge theories (2 dim) [arXiv:2008.05456]

Staggered fermions coupled to a scalar field via a Yukawa interaction
(2 dim) [arXiv:2106.05934]

SU(3) gauge theories with 2 flavors of fermions (2 dim)[arXiv:2207.08945]

JK (ETH) 10 / 21

Designing Networks for NF: Other Architectures?

Dense (Linear) Net

Great for small-size lattice

Number of parameter
∝ N2

Conv Net

Respect translational symmetry
& fewer parameters

Many layers needed to correlate a big
lattice

Other possibilities?

What about constructing layers inspired by symmetries of the action & effective

theories to propagate correlation in more efficient ways?

JK (ETH) 11 / 21

Effective Action & Power Spectral Density

A scalar field theory in n spacetime dimensions:

S[ϕ] =

∫
dnx


1

2
∂µϕ∂µϕ+

1

2
m2ϕ2 +

J∑

j=3

gjϕ
j




The quantum effective action:

Γ[ϕ] =
1

2

∫
dnk ϕ̃(−k)

(
k2 +m2 −Π(k2)

)
ϕ̃(k) + · · ·

(Tree-level Feynman diagrams give the complete scattering amplitude)(
k2 +m2 −Π(k2)

)
is the inverse of two-point correlator/Green’s function

(
k2 +m2 −Π(k2)

)
is the inverse of power spectral density

JK (ETH) 12 / 21

A close look to PSD:

The inverse of PSD of a 1-dim double-well potential (from MC simulation)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
k̂2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1/
P

S
D 0.000 0.025 0.050 0.075

0.00

0.05

0.10

3.6 3.7 3.8 3.9 4.0
3.6

3.8

4.0

−4 −2 0 2 4
0.0

0.1

0.2

0.3

Histogram of xn

−4 −2 0 2 4
−4

−2

0

2

4
hist2d of xn & xn+1

0.0

0.1

0.2

0.3

0.4

1/PSD can be manipulated using a positive, monotonically increasing

function of k̂2; ML techniques can be employed to construct such a function

Manipulating PSD is NOT a local operation; it affects the correlation in data
at largest & shortest scales

JK (ETH) 13 / 21

The inverse of PSD for a 2-dim double-well potential (from MC simulation)

S[ϕ] =

∫
dx2

{
κ

2
(∂µϕ(x))

2 +
m2

2
ϕ(x)2 + λϕ(x)4

}

@ Broken Phase

PSD at k2 = 0 blows up

Mean-field potential turns to a double-well potential

Inspired by mean-field theory

One can build a general function (a neural network) to map the mean

field to a mean field of interest

JK (ETH) 14 / 21

For the sake of comparison with [arXiv:2105.12481, Debbio et.al.] we consider this
2-dim action

S[ϕ] =

∫
dx2

{
κ

2
(∂µϕ(x))

2 +
m2

2
ϕ(x)2 + λϕ(x)4

}

where κ = β, m2 = −4β, and λ = 0.5, with β ∈ [0.5, 0.8] in our simulations.

Goal:

Following suggestions inspired by effective theories, we aim to
construct neural networks that are

economic w.r.t. parameters

do not require many layers of ConvNet to propagate correlations

JK (ETH) 15 / 21

An architecture for 2-dim scalar theories
1 an initial layer to manipulate PSD of white normal noise & general activation
2 followed by two layers of affine coupling implemented with ConvNet &

general activation
Simulation parameters: κ = 0.6 & L = 32

JK (ETH) 16 / 21

Acceptance rate & critical point & large volume

0.5 0.6 0.7 0.8

κ

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce

pt
-r

at
e

L
8

12

16

20

32

46

64

Compare with
[arXiv:2105.12481, Debbio et.al.]

L ∈ [8, 64]

parameters ≈ 3.4K for all cases

trained with transfer learning

poor scaling @ critical point
0 2000 4000 6000 8000 10000

epoch

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce

p
t

ra
te

0 2000 4000 6000 8000

epoch

−0.5

0.0

0.5

1.0

1.5

2.0

lo
g
(q
/p

)

8

16

32

64

20 40 60√
V = L

10−3

10−2

10−1

100

ac
ce

pt
-r

at
e

JK (ETH) 17 / 21

Uncertainty in log(q/p) & acceptance rate

Optimization for κ = 0.5 for L ∈ {8, 16, 32, 64}:

0 2000 4000 6000 8000 10000

epoch

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce

p
t

ra
te

0 2000 4000 6000 8000

epoch

−0.5

0.0

0.5

1.0

1.5

2.0

lo
g
(q
/
p
)

8

16

32

64

The uncertainty in log(q/p) determines acceptance rate

It looks like uncertainty in log(q/p) scales with
√
volume at large volumes

Justification: divide the lattice into n blocks with almost independent fluctuations

JK (ETH) 18 / 21

NFs with block updating

The uncertainty in log(q/p) determines acceptance rate

It looks like uncertainty in log(q/p) scales with
√
volume at large volumes

Justification: divide the lattice into n blocks with almost independent fluctuations

0.5 0.6 0.7 0.8

κ

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce

pt
-r

at
e

L
8

12

16

20

32

46

64

20 40 60√
V = L

10−3

10−2

10−1

100

ac
ce

pt
-r

at
e

20 40 60√
V = L

10−3

10−2

10−1

100

ac
ce

pt
-r

at
e

κ = 0.66

κ = 0.67

κ = 0.68

L = 64 model is sampled block by block

nblocks = 22 (square), acceptance rate ∼ L = 32
nblocks = 42 (star), acceptance rate ∼ L = 16

Asymptotic scaling & saturated training

JK (ETH) 19 / 21

Uncertainty in log(q/p) & block size: Toy model

Let xn, with n ≥ 0, be a sequence of iid normal variables with N (0, σ2).

Let yn is the output of the “Metropolis accept/reject”

yn = f(xn, yn−1) =

{
xn with probability e−Relu(xn−yn−1)

yn−1 otherwise

prior Metropolis

delay

x y

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
accept rate
erfc(/2)

0 1 2 3 4

10 2

10 1

100 accept rate
erfc(/2)

10 8 6 4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0 xn; = 0.5
yn; = 0.5
x = 0.25

10 8 6 4 2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5 xn; = 1
yn; = 1
x = 1

10 8 6 4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25 xn; = 2
yn; = 2
x = 4

JK (ETH) 20 / 21

Conclusion & Outlook

Effective theories to design layers changing the data at long&short scales

Still, the acceptance rate drops fast as the lattice volume increases

Suggestion: Divide&Conquer
Divide the current sample into blocks & update block by block
Optimum block size
In progress...

prior transform

e−S[ϕ]

switch

/ Metropolis

delay

gradient descent

block size

TRAIN

GENERATE

ACCEPT/REJECT

ξ(x)

r[ξ]

ϕ(x)

q[ϕ]

p[ϕ] log q/p

on/off

Outlook: SU(n) gauge theories

/6 /6
0 I

e i2 /3I ei2 /3I

3 2 1 0 1 2 3
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
(

)

JK (ETH) 21 / 21

back-up slides

JK (ETH) 1 / 3

Magnetization & critical point & (un)broken phase

0.50 0.55 0.60 0.65 0.70 0.75 0.80

κ

−1.0

−0.5

0.0

0.5

1.0

φ̄

L = 32

0.50 0.55 0.60 0.65 0.70 0.75 0.80

κ

−1.0

−0.5

0.0

0.5

1.0

φ̄

L = 64

JK (ETH) 2 / 3

Block updating & autocorrelation time

5 10 15
n blocks

200

300

400

500

600

τ i
n
t
×
n

b
lo

ck
s

κ = 0.66, L = 64

τ = 7.8

τ = 47

τ = 588

JK (ETH) 3 / 3

	Lattice Field Theory & Monte Carlo Simulations
	Designing Networks for Normalizing Flow
	Appendix

