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Lattice Field Theory & Monte Carlo Simulations

Quarks

@ Path integral formulation & imaginary time &
discretization & Monte Carlo simulations i

4 a{

define & solve a field theory non-perturbatively
Lattice QCD: Monte Carlo

Simulations
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@ Monte Carlo simulations:
o Draw samples from %e_s[‘/’] distribution (weight of each path/configuration)
o Methods based on local updating suffer from: critical slowing down,

topological freezing, - - -
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Lattice Field Theory & Trivializing Maps
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Abstract: In lattice gauge theory/fthierelexistifieldranstormations thatimap theltheors
to the trivial one, where the basic field variables are completely decoupled from one
another. Such maps can be constructed systematically by integrating certain flow equa-
tions in field space. The construction is worked out in some detail and it is proposed to
combine the Wilson flow (which generates approximately trivializing maps for the Wil-
son gauge action) with the HMC simulation algorithm in order to improve the efficiency
of lattice QCD simulations.

4.1. Trivializing flows. If the generator Z;(U) of the flow (3.2) is such that

t
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the substitution /' — V of the integration variables in the functional integral maps the
theory to the trivial one where the link variables are completely decoupled from one
another. The expectation values (2.1) are then given by

(0)= /D[V](’)(F(V)). (2.9)

Such trivializing maps thus contain the entire dynamics of the theory.

Although the remark is likely to remain an academic one, an intriguing observation
is that the integral (2.9) can be simulated simply by generating uniformly distributed
random gauge fields. Subsequent field configurations are uncorrelated in this case and
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Inverse Transform Sampling & Normalizing Flows

@ Inverse transform sampling (ITS) as a method to generate a random variable
with a flexible distribution:

y & Fylo Fy(x)

o Normalizing flows (NFs) as a generalization of ITS to higher dimensions with
a series of learnable, invertible transformations
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Normalizing Flows & {Statistical Physics, Lattice Field Theory}

o NF for (a dual version of) Ising model in 2 dim [arXiv:1802.02840]
o NF for scalar theories in 2-dim [arXiv:1904.12072, 2002.02428, 2003.06413]

Train (self learning by minimizing the loss)

Requirements

o Prior PDF: f= (&) @ Sample a batch of variables from the prior

@ Transform the batch of variables & calculate the

b —S[¢]
@ Target PDF: fo(¢) o e Jacobian

@ NF neural network ¢ = T'(§) @ Loss = Dy (Gtransformed || Ptarget)

----- .
(o) ———— o) switch
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@ Kaullback-Leibler divergence measures how similar two distributions are:

Daallp) = [ do aié) (logalé) - 1oz pl0]) = 0
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Requirements Train (self learning by minimizing the loss)

@ Prior PDF: f=(€) @ Sample a batch of variables from the prior
_ @ Transform the batch of variables & calculate the
@ Target PDF: fg(¢) o e S1%] Jacobian

@ NF neural network ¢ = T'(€) @ Loss = Dyt (Gransformed| | Pearget)

switch
R

{ ! 2N
prior [
J- rle]

Generate samples & ensure exactness

@ The method of normalizing flows yields an approximate distribution (close to target but not identical)
@ One needs to exploit other methods to ensure the exactness of the final distribution

@ For an unbiased estimate, one can use the Metropolis-Hastings (MH) algorithm to accept/reject
proposed configurations:

" p(¢im1) a(¢)
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1. Networks for Normalizing Flows
2. Poor Scaling at Large Volumes



Designing Networks for NF: Review Papers

@ “Normalizing Flows: An Introduction and Review of Current Methods"
[IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 3964 (2021)]

Normalizing Flows should satisfy several conditions in
order to be practical. They should:

> pobten: o mixing o varibles

Problem: limited representational power

e be invertible; for sampling we need g while for com-

puting likelihood we need f, §3.3 Planar and radial flows

- . o > probien: hard o compute s

o be sufficiently expressive to model the distribution of Nor-linear transforms e

interest, . .. . §3.4.1 Coupling flows §3.4.4 Coupling functions
e be computationally efficient, both in terms of com- §3.4.2 Autoregressive flows Dependon | |

puting f and g (depending on the application) but Architectur llow invertible ot o Nonlinear squared

also in terms of the calculation of the determinant of ol anslomations o Sontinuous mixture CDFs

the Jacobian. §3.5 Residual flows .
In the following section, we describe different types of reble e . polynomial

flows and comment on the above properties. An overview §3.6 Infinitesimal flows

Continuous flows depending on ODES or SDEs

of the methods discussed can be seen in Fig. 2.

@ “Normalizing Flows for Probabilistic Modeling and Inference”
[Journal of Machine Learning Research 22, 1 (2021)]

7 (] Zk-1

) — Ty — Th —

TK — Zg

! ! !

log | detJr, (zo)| + log|detJr,(z))| + - + log|detJr, (zx—1)| = log|detJr(zo)|
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Designing Networks for NF: Coupling Layers

@ Coupling Flows are popular
e enable highly expressive transformations
e have triangular Jacobian matrices
e e.g., can be implemented using checkerboard partitioning
1. Partition the data to blue (active) & red (frozen)

2. Transform the active data za — za = T'(za|h(xf))

3. Change the labels and repeat 2 (w/ new functions)
T is typically a point-wise transformation like affine & spline
T(za|h(xf)) = hi(xf)xa + ho(xs)

o h; are typically constructed using Dense NNs or Convolutional NNs

@ Several layers of coupling flows can be added sequentially

z z ZK-1
z) T, T Tk Zg

log | detJr, (zo)| + log|detJr,(z1)| + - + log|detJy, (zx-1)| = log|detJr(zo)|

[Journal of Machine Learning Research 22, 1 (2021)]
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Designing Networks for NF: Examples with Coupling Layers

Proof of principle studies are done for several theories in 2 dimensions
@ Scalar theory with quartic potential [arXiv:1904.12072, arXiv:2105.12481]

S[¢] = /d%c (;(qub)Q + %m2¢2 + )\¢4)

o A Jupiter notebook can be found here [arXiv:2101.08176]

o scalar theory on a 8 x 8 lattice
@ 16 layers of layers of affine coupling layers for T" and 3 layers of CNNs for h
@ acceptance rate ~ 0.5

e U(1) gauge (2 dim) [arXiv:2003.06413]
@ SU(n) gauge theories (2 dim) [arXiv:2008.05456]

o Staggered fermions coupled to a scalar field via a Yukawa interaction
(2 dim) [arXiv:2106.05934]

@ SU(3) gauge theories with 2 flavors of fermions (2 dim)[arXiv:2207.08945]
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Designing Networks for NF: Other Architectures?

Dense (Linear) Net

@ Respect translational symmetry
& fewer parameters

@ Great for small-size lattice

@ Number of parameter

5 @ Many layers needed to correlate a big
x N

lattice

Other possibilities?

What about constructing layers inspired by symmetries of the action & effective
theories to propagate correlation in more efficient ways?
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Effective Action & Power Spectral Density

@ A scalar field theory in n spacetime dimensions:

J

1. . 1 . ,

Slg] = / "z | 50,000+ 5m*6* + ) g;¢7
j=3

@ The quantum effective action:

Llg] = % /d”kgg(—k) <k‘2 +m?— H(L2)>¢(k) ..

(Tree-level Feynman diagrams give the complete scattering amplitude)

<k2 +m? — H(kz)) is the inverse of two-point correlator/Green'’s function

<k2 +m? — H(k’g)) is the inverse of power spectral density
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A close look to PSD:

@ The inverse of PSD of a 1-dim double-well potential (from MC simulation)

)
0.10 K Histogram of x,,
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@ 1/PSD can be manipulated using a positive, monotonically increasing
function of k2; ML techniques can be employed to construct such a function

@ Manipulating PSD is NOT a local operation; it affects the correlation in data
at largest & shortest scales
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The inverse of PSD for a 2-dim double-well potential (from MC simulation)

8

k=07&m>=—-28&\=0.5

- Scalar field; lattice: 32 x 32;
| II»L"M

2 i ;
g , M[:ﬁ:’mk M Sl¢l = /dw2 {g(amzﬁ(ﬂc))2 + %¢(x)2 + Ag(2)* }J
3 | a“p M'
L ¥ © Broken Phase
2 "M L
“tu’.' @ PSD at k* = 0 blows up
1 r","" " @ Mean-field potential turns to a double-well potential
00‘ 1 2 3 4 5 6 7 zé

Inspired by mean-field theory

One can build a general function (a neural network) to map the mean
field to a mean field of interest
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For the sake of comparison with [arXiv:2105.12481, Debbio et.al.| we consider this
2-dim action

2

61 = [ e { @0l + T3-0(a)? + 2oto)'}

where k = 3, m? = —43, and A = 0.5, with 3 € [0.5,0.8] in our simulations.

Following suggestions inspired by effective theories, we aim to
construct neural networks that are

@ economic w.r.t. parameters

@ do not require many layers of ConvNet to propagate correlations
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An architecture for 2-dim scalar theories

1 an initial layer to manipulate PSD of white normal noise & general activation

2 followed by two layers of affine coupling implemented with ConvNet &

general activation
Simulation parameters: kK = 0.6 & L = 32
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Acceptance rate & critical point & large volume

1.0
L
8
0-81 12 Compare with
16 [arXiv:2105.12481, Debbio et.al.]
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@ # parameters ~ 3.4K for all cases " M"MQNJ £
@ trained with transfer learning o ;
@ poor scaling @ critical point R
ot Lo
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Uncertainty in log(q/p) & acceptance rate

@ Optimization for k = 0.5 for L € {8,16, 32, 64}:
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@ The uncertainty in log(g/p) determines acceptance rate
@ It looks like uncertainty in log(g/p) scales with v/volume at large volumes

@ Justification: divide the lattice into n blocks with almost independent fluctuations
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NFs with block updating

@ The uncertainty in log(q/p) determines acceptance rate
@ It looks like uncertainty in log(g/p) scales with v/volume at large volumes

@ Justification: divide the lattice into n blocks with almost independent fluctuations
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@ L = 64 model is sampled block by block

o Mblocks = 27 (square), acceptance rate ~ L = 32
® Mblocks = 4° (star), acceptance rate ~ L = 16

@ Asymptotic scaling & saturated training
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Uncertainty in log(q/p) & block size: Toy model

@ Let x,, with n > 0, be a sequence of iid normal variables with A/(0,0?).
@ Let y, is the output of the "Metropolis accept/reject”

%, with probability ¢~Relu(@n—vn—1)

Yn = f(xnaynfl) = {

Yn—1 Otherwise

L y

1.0

. .
® acceptrate | 10° ® acceptrate |
— erfc(o2) —— erfc(or2)

::: \\ 107 \‘\\

04 %

TN
'.““‘ 102 \

0.0

JK (ETH)

20/21



Conclusion & Outlook

o Effective theories to design layers changing the data at long&short scales
@ Still, the acceptance rate drops fast as the lattice volume increases

@ Suggestion: Divide&Conquer

o Divide the current sample into blocks & update block by block
o Optimum block size

e In progress...

radient descent (< - - - - 5
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back-up slides



Magnetization & critical point & (un)broken phase
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Block updating & autocorrelation time
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