Hierarchical autoregressive approach to

two-dimensional statistical systems
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I ML acceleration of LQFT simulations

Motivations

@ in LQCD we are limited by the number of simulation points in the
parameters space

o we would like to generate more ensembles with smaller
autocorrelations
o ML may help —
o P. Shanahan Lattice2022 talk (arXiv:2208.03832)
o D. Albandea Lattice2022 talk
o K. Nicoli et al., Phys.Rev.Lett. 126 (2021) 3, 032001
(]
(]

L. del Debbio PoS LATTICE2021 (2022) 059
and others

Two-dimensional statistical systems

o test the approach for systems with discrete degrees of freedom and
try to scale up

o playground: Ising model
o Potts model with @ =12 at the first-order phase transition




.’IL acceleration of LQFT simulations

Variational Autoregressive Neural Network

Complete factorisation (VAN approach):

N . .
p(s) = P(Sl)‘]:[zp(S’lsl’ coyS)

Conditional factorisation (hierarchical approach):

4

p(s) = p(B(s))p(I(s)[B(s) H
where
Ng
P(B(s)) = P(s.‘la)gp(slB|5éasl23’ 55 )
and

N, .
p(1(s)[B(s)) = [ p(s]"[s]" 572, ... 571 B2(s)).
i=1

V.




-celeration of LQFT simulations
Variational Autoregressive Neural Network

N . .
p(s) = qo(s) = qe(sl)gqe(S’lslv---’S'_l)

V.
Architecture

Figure taken from D. Wu, Phys. Rev. Lett. 122, 080602 (2019)J




ML acceleration of LQFT simulations

Acceptance probability:
. P(5k+1)CI9(5k)> , { W(5k+1)}
P(sk— s =min(1l,————< ) =min<1l, —"—==
(-2 sca) =min (1 G0 ) = min {1,

K. Nicoli et al., Phys.Rev.E 101 (2020) 2, 023304

Importance weights:

()
s)

Markov chain transition matrix eigenvalues:

je]

w(s) =

and w(s;) > w(sp) >+ > w(spy)

—

q

1 for k=0,
- _qu(s;)(l—wﬂ(j—;%) for0< k< M—1
1=

J. S. Liu, Metropolized independent sampling with comparisons to rejection sampling

and importance sampling, Statistics and Computing, 6 (1996) 113



-ation of LQFT simulations
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Figure: Histograms of M —1 eigenvalues of transition matrix, Ax~q, for system
4 x 4. Training was performed using the Dk loss function. Left figure is for
initial state of network, right is for fully trained network. Green line denotes
M —1 =216 1 =65535 value.




B =0.6:

-n of LQFT simulations
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Figure: Dynamics of the neural network training using the KL divergence loss
function. The yellow horizontal line shows a uniform probability distribution of

p(s) =2716.




- acceleration of LQFT simulations

Factorization revisited

p(B(s))p(1(s)|B(s)) =

p(s) =

B(s)) HPI"” s)[B?(s)),

4

Hierarchical approach
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Figure: Example of hierarchical partitioning for L = 16.




_tion of LQFT simulations

Hierarchical approach

Figure: Scaled down representation of the architecture of the smallest neural
network used to generate green sublattice.




-celeration of LQFT simulations

For each of the L? spins we need to calculate the probability, which costs
approximately L* FLOPs, because its a matrix-vector multiplication of
size [2,

Cyan ~ L x L* = 1°.
The largest lattice has 2L spins, hence we multiply a matrix-vector of size
2L,

Cuan ~ 2L x 412 = 13613,




-tion of LQFT simulations

Results for the Ising model
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-tion of LQFT simulations

Results for the Ising model

VAN, B= 0.44
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-Ieration of LQFT simulations

HAN, B= 0.44
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-cceleration of LQFT simulations

Potts model
@ @ =12 state model
o first order phase transition at known f.

@ one-hot encoding increases the input/output by factor 12

o softmax layer at the output

.

Pretraining

@ one can reuse the neural nets trained at smaller system size,
different temperature

@ only the two largest neural nets have to be trained from scratch
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-cceleration of LQFT simulations
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-cceleration of LQFT simulations
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-eleration of LQFT simulations

Histograms

Comparison of p(M) and qg(M) after accept/reject step.
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-cceleration of LQFT simulations
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-acceleration of LQFT simulations

Magnetization

Ratio of (M) between cluster and NMCMC algorithms using 10°

configurations.
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-1c|usions

@ we introduced a hierarchical approach based on VAN

o it allows to train efficiently systems of much larger number of
degrees of freedom

@ Potts model with @ =12: 16 x 16 ~ 2h, 32 x 32 ~ 48h, attempting
to train 64 x 64

@ training and simulations work even at the first order phase transitionJ

@ implemented and tested with conditional normalizing flows for ¢*
but lower performance than the original approach

Thank you very much for your attention
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